| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem4.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 | 1 | frrlem2 |  |-  ( g e. B -> Fun g ) | 
						
							| 3 | 2 | funfnd |  |-  ( g e. B -> g Fn dom g ) | 
						
							| 4 |  | fnresin1 |  |-  ( g Fn dom g -> ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( g e. B -> ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( g e. B /\ h e. B ) -> ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) ) | 
						
							| 7 | 1 | frrlem1 |  |-  B = { g | E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) } | 
						
							| 8 | 7 | eqabri |  |-  ( g e. B <-> E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 9 |  | fndm |  |-  ( g Fn b -> dom g = b ) | 
						
							| 10 | 9 | adantr |  |-  ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) ) -> dom g = b ) | 
						
							| 11 | 10 | raleqdv |  |-  ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) ) -> ( A. a e. dom g ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) <-> A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 12 | 11 | biimp3ar |  |-  ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) -> A. a e. dom g ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) | 
						
							| 13 |  | rsp |  |-  ( A. a e. dom g ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) -> ( a e. dom g -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) -> ( a e. dom g -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 15 | 14 | exlimiv |  |-  ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) -> ( a e. dom g -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 16 | 8 15 | sylbi |  |-  ( g e. B -> ( a e. dom g -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 17 |  | elinel1 |  |-  ( a e. ( dom g i^i dom h ) -> a e. dom g ) | 
						
							| 18 | 16 17 | impel |  |-  ( ( g e. B /\ a e. ( dom g i^i dom h ) ) -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) | 
						
							| 19 | 18 | adantlr |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> a e. ( dom g i^i dom h ) ) | 
						
							| 21 | 20 | fvresd |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( g ` a ) ) | 
						
							| 22 |  | resres |  |-  ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) = ( g |` ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) ) | 
						
							| 23 |  | predss |  |-  Pred ( R , ( dom g i^i dom h ) , a ) C_ ( dom g i^i dom h ) | 
						
							| 24 |  | sseqin2 |  |-  ( Pred ( R , ( dom g i^i dom h ) , a ) C_ ( dom g i^i dom h ) <-> ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) = Pred ( R , ( dom g i^i dom h ) , a ) ) | 
						
							| 25 | 23 24 | mpbi |  |-  ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) = Pred ( R , ( dom g i^i dom h ) , a ) | 
						
							| 26 | 1 | frrlem1 |  |-  B = { h | E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) } | 
						
							| 27 | 26 | eqabri |  |-  ( h e. B <-> E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 28 |  | exdistrv |  |-  ( E. b E. c ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) <-> ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) ) | 
						
							| 29 |  | inss1 |  |-  ( b i^i c ) C_ b | 
						
							| 30 |  | simpl2l |  |-  ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> b C_ A ) | 
						
							| 31 | 29 30 | sstrid |  |-  ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( b i^i c ) C_ A ) | 
						
							| 32 |  | simp2r |  |-  ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) -> A. a e. b Pred ( R , A , a ) C_ b ) | 
						
							| 33 |  | simp2r |  |-  ( ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) -> A. a e. c Pred ( R , A , a ) C_ c ) | 
						
							| 34 |  | nfra1 |  |-  F/ a A. a e. b Pred ( R , A , a ) C_ b | 
						
							| 35 |  | nfra1 |  |-  F/ a A. a e. c Pred ( R , A , a ) C_ c | 
						
							| 36 | 34 35 | nfan |  |-  F/ a ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) | 
						
							| 37 |  | elinel1 |  |-  ( a e. ( b i^i c ) -> a e. b ) | 
						
							| 38 |  | rsp |  |-  ( A. a e. b Pred ( R , A , a ) C_ b -> ( a e. b -> Pred ( R , A , a ) C_ b ) ) | 
						
							| 39 | 37 38 | syl5com |  |-  ( a e. ( b i^i c ) -> ( A. a e. b Pred ( R , A , a ) C_ b -> Pred ( R , A , a ) C_ b ) ) | 
						
							| 40 |  | elinel2 |  |-  ( a e. ( b i^i c ) -> a e. c ) | 
						
							| 41 |  | rsp |  |-  ( A. a e. c Pred ( R , A , a ) C_ c -> ( a e. c -> Pred ( R , A , a ) C_ c ) ) | 
						
							| 42 | 40 41 | syl5com |  |-  ( a e. ( b i^i c ) -> ( A. a e. c Pred ( R , A , a ) C_ c -> Pred ( R , A , a ) C_ c ) ) | 
						
							| 43 | 39 42 | anim12d |  |-  ( a e. ( b i^i c ) -> ( ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) -> ( Pred ( R , A , a ) C_ b /\ Pred ( R , A , a ) C_ c ) ) ) | 
						
							| 44 |  | ssin |  |-  ( ( Pred ( R , A , a ) C_ b /\ Pred ( R , A , a ) C_ c ) <-> Pred ( R , A , a ) C_ ( b i^i c ) ) | 
						
							| 45 | 44 | biimpi |  |-  ( ( Pred ( R , A , a ) C_ b /\ Pred ( R , A , a ) C_ c ) -> Pred ( R , A , a ) C_ ( b i^i c ) ) | 
						
							| 46 | 43 45 | syl6com |  |-  ( ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) -> ( a e. ( b i^i c ) -> Pred ( R , A , a ) C_ ( b i^i c ) ) ) | 
						
							| 47 | 36 46 | ralrimi |  |-  ( ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) -> A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) | 
						
							| 48 | 32 33 47 | syl2an |  |-  ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) | 
						
							| 49 |  | simpl1 |  |-  ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> g Fn b ) | 
						
							| 50 | 49 | fndmd |  |-  ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> dom g = b ) | 
						
							| 51 |  | simpr1 |  |-  ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> h Fn c ) | 
						
							| 52 | 51 | fndmd |  |-  ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> dom h = c ) | 
						
							| 53 |  | ineq12 |  |-  ( ( dom g = b /\ dom h = c ) -> ( dom g i^i dom h ) = ( b i^i c ) ) | 
						
							| 54 | 53 | sseq1d |  |-  ( ( dom g = b /\ dom h = c ) -> ( ( dom g i^i dom h ) C_ A <-> ( b i^i c ) C_ A ) ) | 
						
							| 55 | 53 | sseq2d |  |-  ( ( dom g = b /\ dom h = c ) -> ( Pred ( R , A , a ) C_ ( dom g i^i dom h ) <-> Pred ( R , A , a ) C_ ( b i^i c ) ) ) | 
						
							| 56 | 53 55 | raleqbidv |  |-  ( ( dom g = b /\ dom h = c ) -> ( A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) <-> A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) | 
						
							| 57 | 54 56 | anbi12d |  |-  ( ( dom g = b /\ dom h = c ) -> ( ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) <-> ( ( b i^i c ) C_ A /\ A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) ) | 
						
							| 58 | 50 52 57 | syl2anc |  |-  ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) <-> ( ( b i^i c ) C_ A /\ A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) ) | 
						
							| 59 | 31 48 58 | mpbir2and |  |-  ( ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 60 | 59 | exlimivv |  |-  ( E. b E. c ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 61 | 28 60 | sylbir |  |-  ( ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) /\ E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( a G ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 62 | 8 27 61 | syl2anb |  |-  ( ( g e. B /\ h e. B ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 64 |  | preddowncl |  |-  ( ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) -> ( a e. ( dom g i^i dom h ) -> Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , A , a ) ) ) | 
						
							| 65 | 63 20 64 | sylc |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , A , a ) ) | 
						
							| 66 | 25 65 | eqtrid |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) = Pred ( R , A , a ) ) | 
						
							| 67 | 66 | reseq2d |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( g |` ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) ) = ( g |` Pred ( R , A , a ) ) ) | 
						
							| 68 | 22 67 | eqtrid |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) = ( g |` Pred ( R , A , a ) ) ) | 
						
							| 69 | 68 | oveq2d |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) = ( a G ( g |` Pred ( R , A , a ) ) ) ) | 
						
							| 70 | 19 21 69 | 3eqtr4d |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) | 
						
							| 71 | 70 | ralrimiva |  |-  ( ( g e. B /\ h e. B ) -> A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) | 
						
							| 72 | 6 71 | jca |  |-  ( ( g e. B /\ h e. B ) -> ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( a G ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |