Description: Lemma for well-founded recursion. State the well-founded recursion generator in terms of the acceptable functions. (Contributed by Scott Fenton, 27-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem5.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | |
| frrlem5.2 | |- F = frecs ( R , A , G ) | ||
| Assertion | frrlem5 | |- F = U. B | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frrlem5.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | |
| 2 | frrlem5.2 | |- F = frecs ( R , A , G ) | |
| 3 | df-frecs |  |-  frecs ( R , A , G ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | |
| 4 | 1 | unieqi |  |-  U. B = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
| 5 | 3 2 4 | 3eqtr4i | |- F = U. B |