Description: Lemma for well-founded recursion. The well-founded recursion generator is a relation. (Contributed by Scott Fenton, 27-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem5.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | |
| frrlem5.2 | |- F = frecs ( R , A , G ) | ||
| Assertion | frrlem6 | |- Rel F | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frrlem5.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | |
| 2 | frrlem5.2 | |- F = frecs ( R , A , G ) | |
| 3 | 1 2 | frrlem5 | |- F = U. B | 
| 4 | 3 | releqi | |- ( Rel F <-> Rel U. B ) | 
| 5 | reluni | |- ( Rel U. B <-> A. g e. B Rel g ) | |
| 6 | 4 5 | bitri | |- ( Rel F <-> A. g e. B Rel g ) | 
| 7 | 1 | frrlem2 | |- ( g e. B -> Fun g ) | 
| 8 | funrel | |- ( Fun g -> Rel g ) | |
| 9 | 7 8 | syl | |- ( g e. B -> Rel g ) | 
| 10 | 6 9 | mprgbir | |- Rel F |