| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem5.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 |  | frrlem5.2 |  |-  F = frecs ( R , A , G ) | 
						
							| 3 | 1 2 | frrlem5 |  |-  F = U. B | 
						
							| 4 | 3 | dmeqi |  |-  dom F = dom U. B | 
						
							| 5 |  | dmuni |  |-  dom U. B = U_ g e. B dom g | 
						
							| 6 | 4 5 | eqtri |  |-  dom F = U_ g e. B dom g | 
						
							| 7 | 6 | sseq1i |  |-  ( dom F C_ A <-> U_ g e. B dom g C_ A ) | 
						
							| 8 |  | iunss |  |-  ( U_ g e. B dom g C_ A <-> A. g e. B dom g C_ A ) | 
						
							| 9 | 7 8 | bitri |  |-  ( dom F C_ A <-> A. g e. B dom g C_ A ) | 
						
							| 10 | 1 | frrlem3 |  |-  ( g e. B -> dom g C_ A ) | 
						
							| 11 | 9 10 | mprgbir |  |-  dom F C_ A |