| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frrlem5.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 |  | frrlem5.2 |  |-  F = frecs ( R , A , G ) | 
						
							| 3 |  | vex |  |-  z e. _V | 
						
							| 4 | 3 | eldm2 |  |-  ( z e. dom F <-> E. w <. z , w >. e. F ) | 
						
							| 5 | 1 2 | frrlem5 |  |-  F = U. B | 
						
							| 6 | 1 | frrlem1 |  |-  B = { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } | 
						
							| 7 | 6 | unieqi |  |-  U. B = U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } | 
						
							| 8 | 5 7 | eqtri |  |-  F = U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } | 
						
							| 9 | 8 | eleq2i |  |-  ( <. z , w >. e. F <-> <. z , w >. e. U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } ) | 
						
							| 10 |  | eluniab |  |-  ( <. z , w >. e. U. { g | E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) } <-> E. g ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) ) | 
						
							| 11 | 9 10 | bitri |  |-  ( <. z , w >. e. F <-> E. g ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) ) | 
						
							| 12 |  | simpr2r |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> A. z e. a Pred ( R , A , z ) C_ a ) | 
						
							| 13 |  | vex |  |-  w e. _V | 
						
							| 14 | 3 13 | opeldm |  |-  ( <. z , w >. e. g -> z e. dom g ) | 
						
							| 15 | 14 | adantr |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> z e. dom g ) | 
						
							| 16 |  | simpr1 |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g Fn a ) | 
						
							| 17 | 16 | fndmd |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> dom g = a ) | 
						
							| 18 | 15 17 | eleqtrd |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> z e. a ) | 
						
							| 19 |  | rsp |  |-  ( A. z e. a Pred ( R , A , z ) C_ a -> ( z e. a -> Pred ( R , A , z ) C_ a ) ) | 
						
							| 20 | 12 18 19 | sylc |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ a ) | 
						
							| 21 | 20 17 | sseqtrrd |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom g ) | 
						
							| 22 |  | 19.8a |  |-  ( ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) | 
						
							| 23 | 6 | eqabri |  |-  ( g e. B <-> E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) | 
						
							| 24 | 22 23 | sylibr |  |-  ( ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> g e. B ) | 
						
							| 25 | 24 | adantl |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g e. B ) | 
						
							| 26 |  | elssuni |  |-  ( g e. B -> g C_ U. B ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g C_ U. B ) | 
						
							| 28 | 27 5 | sseqtrrdi |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> g C_ F ) | 
						
							| 29 |  | dmss |  |-  ( g C_ F -> dom g C_ dom F ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> dom g C_ dom F ) | 
						
							| 31 | 21 30 | sstrd |  |-  ( ( <. z , w >. e. g /\ ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom F ) | 
						
							| 32 | 31 | expcom |  |-  ( ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> ( <. z , w >. e. g -> Pred ( R , A , z ) C_ dom F ) ) | 
						
							| 33 | 32 | exlimiv |  |-  ( E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) -> ( <. z , w >. e. g -> Pred ( R , A , z ) C_ dom F ) ) | 
						
							| 34 | 33 | impcom |  |-  ( ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom F ) | 
						
							| 35 | 34 | exlimiv |  |-  ( E. g ( <. z , w >. e. g /\ E. a ( g Fn a /\ ( a C_ A /\ A. z e. a Pred ( R , A , z ) C_ a ) /\ A. z e. a ( g ` z ) = ( z G ( g |` Pred ( R , A , z ) ) ) ) ) -> Pred ( R , A , z ) C_ dom F ) | 
						
							| 36 | 11 35 | sylbi |  |-  ( <. z , w >. e. F -> Pred ( R , A , z ) C_ dom F ) | 
						
							| 37 | 36 | exlimiv |  |-  ( E. w <. z , w >. e. F -> Pred ( R , A , z ) C_ dom F ) | 
						
							| 38 | 4 37 | sylbi |  |-  ( z e. dom F -> Pred ( R , A , z ) C_ dom F ) |