Description: Show without using the axiom of replacement that the well-founded recursion generator gives a relation. (Contributed by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frrrel.1 | |- F = frecs ( R , A , G ) | |
| Assertion | frrrel | |- Rel F | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frrrel.1 | |- F = frecs ( R , A , G ) | |
| 2 | eqid |  |-  { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | |
| 3 | 2 1 | frrlem6 | |- Rel F |