Step |
Hyp |
Ref |
Expression |
1 |
|
frrusgrord0.v |
|- V = ( Vtx ` G ) |
2 |
|
rusgrrgr |
|- ( G RegUSGraph K -> G RegGraph K ) |
3 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
4 |
1 3
|
rgrprop |
|- ( G RegGraph K -> ( K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) |
5 |
2 4
|
syl |
|- ( G RegUSGraph K -> ( K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) |
6 |
5
|
simprd |
|- ( G RegUSGraph K -> A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) |
7 |
1
|
frrusgrord0 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
8 |
6 7
|
syl5 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( G RegUSGraph K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
9 |
8
|
3expb |
|- ( ( G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> ( G RegUSGraph K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
10 |
9
|
expcom |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) ) |
11 |
10
|
impd |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |