Step |
Hyp |
Ref |
Expression |
1 |
|
frrusgrord0.v |
|- V = ( Vtx ` G ) |
2 |
|
frgrusgr |
|- ( G e. FriendGraph -> G e. USGraph ) |
3 |
2
|
anim1i |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> ( G e. USGraph /\ V e. Fin ) ) |
4 |
1
|
isfusgr |
|- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |
5 |
3 4
|
sylibr |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> G e. FinUSGraph ) |
6 |
1
|
fusgreghash2wsp |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) |
7 |
5 6
|
stoic3 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) |
8 |
7
|
imp |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) |
9 |
1
|
frgrhash2wsp |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) ) |
10 |
9
|
eqcomd |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( # ` ( 2 WSPathsN G ) ) ) |
11 |
10
|
eqeq1d |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) <-> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) |
12 |
11
|
3adant3 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) <-> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) |
13 |
12
|
adantr |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) <-> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) ) ) |
14 |
1
|
frrusgrord0lem |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) ) |
15 |
|
peano2cnm |
|- ( ( # ` V ) e. CC -> ( ( # ` V ) - 1 ) e. CC ) |
16 |
15
|
3ad2ant2 |
|- ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( ( # ` V ) - 1 ) e. CC ) |
17 |
|
kcnktkm1cn |
|- ( K e. CC -> ( K x. ( K - 1 ) ) e. CC ) |
18 |
17
|
3ad2ant1 |
|- ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( K x. ( K - 1 ) ) e. CC ) |
19 |
|
simp2 |
|- ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( # ` V ) e. CC ) |
20 |
|
simp3 |
|- ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( # ` V ) =/= 0 ) |
21 |
16 18 19 20
|
mulcand |
|- ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) <-> ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) ) ) |
22 |
|
npcan1 |
|- ( ( # ` V ) e. CC -> ( ( ( # ` V ) - 1 ) + 1 ) = ( # ` V ) ) |
23 |
|
oveq1 |
|- ( ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) -> ( ( ( # ` V ) - 1 ) + 1 ) = ( ( K x. ( K - 1 ) ) + 1 ) ) |
24 |
22 23
|
sylan9req |
|- ( ( ( # ` V ) e. CC /\ ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) |
25 |
24
|
ex |
|- ( ( # ` V ) e. CC -> ( ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
26 |
25
|
3ad2ant2 |
|- ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( ( ( # ` V ) - 1 ) = ( K x. ( K - 1 ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
27 |
21 26
|
sylbid |
|- ( ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
28 |
14 27
|
syl |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
29 |
13 28
|
sylbird |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( K x. ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
30 |
8 29
|
mpd |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) |
31 |
30
|
ex |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |