Step |
Hyp |
Ref |
Expression |
1 |
|
frrusgrord0.v |
|- V = ( Vtx ` G ) |
2 |
|
frgrusgr |
|- ( G e. FriendGraph -> G e. USGraph ) |
3 |
2
|
anim1i |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> ( G e. USGraph /\ V e. Fin ) ) |
4 |
1
|
isfusgr |
|- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |
5 |
3 4
|
sylibr |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> G e. FinUSGraph ) |
6 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
7 |
1 6
|
fusgrregdegfi |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> K e. NN0 ) ) |
8 |
5 7
|
stoic3 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> K e. NN0 ) ) |
9 |
8
|
imp |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> K e. NN0 ) |
10 |
9
|
nn0cnd |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> K e. CC ) |
11 |
|
hashcl |
|- ( V e. Fin -> ( # ` V ) e. NN0 ) |
12 |
11
|
nn0cnd |
|- ( V e. Fin -> ( # ` V ) e. CC ) |
13 |
12
|
3ad2ant2 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( # ` V ) e. CC ) |
14 |
13
|
adantr |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` V ) e. CC ) |
15 |
|
hasheq0 |
|- ( V e. Fin -> ( ( # ` V ) = 0 <-> V = (/) ) ) |
16 |
15
|
biimpd |
|- ( V e. Fin -> ( ( # ` V ) = 0 -> V = (/) ) ) |
17 |
16
|
necon3d |
|- ( V e. Fin -> ( V =/= (/) -> ( # ` V ) =/= 0 ) ) |
18 |
17
|
imp |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( # ` V ) =/= 0 ) |
19 |
18
|
3adant1 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( # ` V ) =/= 0 ) |
20 |
19
|
adantr |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( # ` V ) =/= 0 ) |
21 |
10 14 20
|
3jca |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( K e. CC /\ ( # ` V ) e. CC /\ ( # ` V ) =/= 0 ) ) |