| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frsucmpt.1 |
|- F/_ x A |
| 2 |
|
frsucmpt.2 |
|- F/_ x B |
| 3 |
|
frsucmpt.3 |
|- F/_ x D |
| 4 |
|
frsucmpt.4 |
|- F = ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
| 5 |
|
frsucmpt.5 |
|- ( x = ( F ` B ) -> C = D ) |
| 6 |
|
frsuc |
|- ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) ) |
| 7 |
4
|
fveq1i |
|- ( F ` suc B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) |
| 8 |
4
|
fveq1i |
|- ( F ` B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) |
| 9 |
8
|
fveq2i |
|- ( ( x e. _V |-> C ) ` ( F ` B ) ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) |
| 10 |
6 7 9
|
3eqtr4g |
|- ( B e. _om -> ( F ` suc B ) = ( ( x e. _V |-> C ) ` ( F ` B ) ) ) |
| 11 |
|
fvex |
|- ( F ` B ) e. _V |
| 12 |
|
nfmpt1 |
|- F/_ x ( x e. _V |-> C ) |
| 13 |
12 1
|
nfrdg |
|- F/_ x rec ( ( x e. _V |-> C ) , A ) |
| 14 |
|
nfcv |
|- F/_ x _om |
| 15 |
13 14
|
nfres |
|- F/_ x ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
| 16 |
4 15
|
nfcxfr |
|- F/_ x F |
| 17 |
16 2
|
nffv |
|- F/_ x ( F ` B ) |
| 18 |
|
eqid |
|- ( x e. _V |-> C ) = ( x e. _V |-> C ) |
| 19 |
17 3 5 18
|
fvmptf |
|- ( ( ( F ` B ) e. _V /\ D e. V ) -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = D ) |
| 20 |
11 19
|
mpan |
|- ( D e. V -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = D ) |
| 21 |
10 20
|
sylan9eq |
|- ( ( B e. _om /\ D e. V ) -> ( F ` suc B ) = D ) |