| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frsucmpt2.1 |
|- F = ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
| 2 |
|
frsucmpt2.2 |
|- ( y = x -> E = C ) |
| 3 |
|
frsucmpt2.3 |
|- ( y = ( F ` B ) -> E = D ) |
| 4 |
|
nfcv |
|- F/_ y A |
| 5 |
|
nfcv |
|- F/_ y B |
| 6 |
|
nfcv |
|- F/_ y D |
| 7 |
2
|
cbvmptv |
|- ( y e. _V |-> E ) = ( x e. _V |-> C ) |
| 8 |
|
rdgeq1 |
|- ( ( y e. _V |-> E ) = ( x e. _V |-> C ) -> rec ( ( y e. _V |-> E ) , A ) = rec ( ( x e. _V |-> C ) , A ) ) |
| 9 |
7 8
|
ax-mp |
|- rec ( ( y e. _V |-> E ) , A ) = rec ( ( x e. _V |-> C ) , A ) |
| 10 |
9
|
reseq1i |
|- ( rec ( ( y e. _V |-> E ) , A ) |` _om ) = ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
| 11 |
1 10
|
eqtr4i |
|- F = ( rec ( ( y e. _V |-> E ) , A ) |` _om ) |
| 12 |
4 5 6 11 3
|
frsucmpt |
|- ( ( B e. _om /\ D e. V ) -> ( F ` suc B ) = D ) |