| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frsucmpt.1 |
|- F/_ x A |
| 2 |
|
frsucmpt.2 |
|- F/_ x B |
| 3 |
|
frsucmpt.3 |
|- F/_ x D |
| 4 |
|
frsucmpt.4 |
|- F = ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
| 5 |
|
frsucmpt.5 |
|- ( x = ( F ` B ) -> C = D ) |
| 6 |
4
|
fveq1i |
|- ( F ` suc B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) |
| 7 |
|
frfnom |
|- ( rec ( ( x e. _V |-> C ) , A ) |` _om ) Fn _om |
| 8 |
|
fndm |
|- ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) Fn _om -> dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) = _om ) |
| 9 |
7 8
|
ax-mp |
|- dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) = _om |
| 10 |
9
|
eleq2i |
|- ( suc B e. dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) <-> suc B e. _om ) |
| 11 |
|
peano2b |
|- ( B e. _om <-> suc B e. _om ) |
| 12 |
|
frsuc |
|- ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) ) |
| 13 |
4
|
fveq1i |
|- ( F ` B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) |
| 14 |
13
|
fveq2i |
|- ( ( x e. _V |-> C ) ` ( F ` B ) ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) |
| 15 |
12 14
|
eqtr4di |
|- ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> C ) ` ( F ` B ) ) ) |
| 16 |
|
nfmpt1 |
|- F/_ x ( x e. _V |-> C ) |
| 17 |
16 1
|
nfrdg |
|- F/_ x rec ( ( x e. _V |-> C ) , A ) |
| 18 |
|
nfcv |
|- F/_ x _om |
| 19 |
17 18
|
nfres |
|- F/_ x ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
| 20 |
4 19
|
nfcxfr |
|- F/_ x F |
| 21 |
20 2
|
nffv |
|- F/_ x ( F ` B ) |
| 22 |
|
eqid |
|- ( x e. _V |-> C ) = ( x e. _V |-> C ) |
| 23 |
21 3 5 22
|
fvmptnf |
|- ( -. D e. _V -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = (/) ) |
| 24 |
15 23
|
sylan9eqr |
|- ( ( -. D e. _V /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) |
| 25 |
24
|
ex |
|- ( -. D e. _V -> ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) ) |
| 26 |
11 25
|
biimtrrid |
|- ( -. D e. _V -> ( suc B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) ) |
| 27 |
10 26
|
biimtrid |
|- ( -. D e. _V -> ( suc B e. dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) ) |
| 28 |
|
ndmfv |
|- ( -. suc B e. dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) |
| 29 |
27 28
|
pm2.61d1 |
|- ( -. D e. _V -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) |
| 30 |
6 29
|
eqtrid |
|- ( -. D e. _V -> ( F ` suc B ) = (/) ) |