Step |
Hyp |
Ref |
Expression |
1 |
|
frsucmpt.1 |
|- F/_ x A |
2 |
|
frsucmpt.2 |
|- F/_ x B |
3 |
|
frsucmpt.3 |
|- F/_ x D |
4 |
|
frsucmpt.4 |
|- F = ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
5 |
|
frsucmpt.5 |
|- ( x = ( F ` B ) -> C = D ) |
6 |
4
|
fveq1i |
|- ( F ` suc B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) |
7 |
|
frfnom |
|- ( rec ( ( x e. _V |-> C ) , A ) |` _om ) Fn _om |
8 |
|
fndm |
|- ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) Fn _om -> dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) = _om ) |
9 |
7 8
|
ax-mp |
|- dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) = _om |
10 |
9
|
eleq2i |
|- ( suc B e. dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) <-> suc B e. _om ) |
11 |
|
peano2b |
|- ( B e. _om <-> suc B e. _om ) |
12 |
|
frsuc |
|- ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) ) |
13 |
4
|
fveq1i |
|- ( F ` B ) = ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) |
14 |
13
|
fveq2i |
|- ( ( x e. _V |-> C ) ` ( F ` B ) ) = ( ( x e. _V |-> C ) ` ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` B ) ) |
15 |
12 14
|
eqtr4di |
|- ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = ( ( x e. _V |-> C ) ` ( F ` B ) ) ) |
16 |
|
nfmpt1 |
|- F/_ x ( x e. _V |-> C ) |
17 |
16 1
|
nfrdg |
|- F/_ x rec ( ( x e. _V |-> C ) , A ) |
18 |
|
nfcv |
|- F/_ x _om |
19 |
17 18
|
nfres |
|- F/_ x ( rec ( ( x e. _V |-> C ) , A ) |` _om ) |
20 |
4 19
|
nfcxfr |
|- F/_ x F |
21 |
20 2
|
nffv |
|- F/_ x ( F ` B ) |
22 |
|
eqid |
|- ( x e. _V |-> C ) = ( x e. _V |-> C ) |
23 |
21 3 5 22
|
fvmptnf |
|- ( -. D e. _V -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = (/) ) |
24 |
15 23
|
sylan9eqr |
|- ( ( -. D e. _V /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) |
25 |
24
|
ex |
|- ( -. D e. _V -> ( B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) ) |
26 |
11 25
|
syl5bir |
|- ( -. D e. _V -> ( suc B e. _om -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) ) |
27 |
10 26
|
syl5bi |
|- ( -. D e. _V -> ( suc B e. dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) ) |
28 |
|
ndmfv |
|- ( -. suc B e. dom ( rec ( ( x e. _V |-> C ) , A ) |` _om ) -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) |
29 |
27 28
|
pm2.61d1 |
|- ( -. D e. _V -> ( ( rec ( ( x e. _V |-> C ) , A ) |` _om ) ` suc B ) = (/) ) |
30 |
6 29
|
eqtrid |
|- ( -. D e. _V -> ( F ` suc B ) = (/) ) |