Metamath Proof Explorer


Theorem frusgrnn0

Description: In a nonempty finite k-regular simple graph, the degree of each vertex is finite. (Contributed by AV, 7-May-2021)

Ref Expression
Hypothesis frusgrnn0.v
|- V = ( Vtx ` G )
Assertion frusgrnn0
|- ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 )

Proof

Step Hyp Ref Expression
1 frusgrnn0.v
 |-  V = ( Vtx ` G )
2 3simpb
 |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> ( G e. FinUSGraph /\ V =/= (/) ) )
3 eqid
 |-  ( VtxDeg ` G ) = ( VtxDeg ` G )
4 1 3 rusgrprop0
 |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) )
5 4 simp3d
 |-  ( G RegUSGraph K -> A. v e. V ( ( VtxDeg ` G ) ` v ) = K )
6 5 3ad2ant2
 |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = K )
7 1 3 fusgrregdegfi
 |-  ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> K e. NN0 ) )
8 2 6 7 sylc
 |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 )