Step |
Hyp |
Ref |
Expression |
1 |
|
frusgrnn0.v |
|- V = ( Vtx ` G ) |
2 |
|
3simpb |
|- ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> ( G e. FinUSGraph /\ V =/= (/) ) ) |
3 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
4 |
1 3
|
rusgrprop0 |
|- ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) |
5 |
4
|
simp3d |
|- ( G RegUSGraph K -> A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) |
6 |
5
|
3ad2ant2 |
|- ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) |
7 |
1 3
|
fusgrregdegfi |
|- ( ( G e. FinUSGraph /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> K e. NN0 ) ) |
8 |
2 6 7
|
sylc |
|- ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 ) |