Step |
Hyp |
Ref |
Expression |
1 |
|
frxp.1 |
|- T = { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } |
2 |
|
ssn0 |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> ( A X. B ) =/= (/) ) |
3 |
|
xpnz |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
4 |
3
|
biimpri |
|- ( ( A X. B ) =/= (/) -> ( A =/= (/) /\ B =/= (/) ) ) |
5 |
4
|
simprd |
|- ( ( A X. B ) =/= (/) -> B =/= (/) ) |
6 |
2 5
|
syl |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> B =/= (/) ) |
7 |
|
dmxp |
|- ( B =/= (/) -> dom ( A X. B ) = A ) |
8 |
|
dmss |
|- ( s C_ ( A X. B ) -> dom s C_ dom ( A X. B ) ) |
9 |
|
sseq2 |
|- ( dom ( A X. B ) = A -> ( dom s C_ dom ( A X. B ) <-> dom s C_ A ) ) |
10 |
8 9
|
syl5ib |
|- ( dom ( A X. B ) = A -> ( s C_ ( A X. B ) -> dom s C_ A ) ) |
11 |
7 10
|
syl |
|- ( B =/= (/) -> ( s C_ ( A X. B ) -> dom s C_ A ) ) |
12 |
11
|
impcom |
|- ( ( s C_ ( A X. B ) /\ B =/= (/) ) -> dom s C_ A ) |
13 |
6 12
|
syldan |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> dom s C_ A ) |
14 |
|
relxp |
|- Rel ( A X. B ) |
15 |
|
relss |
|- ( s C_ ( A X. B ) -> ( Rel ( A X. B ) -> Rel s ) ) |
16 |
14 15
|
mpi |
|- ( s C_ ( A X. B ) -> Rel s ) |
17 |
|
reldm0 |
|- ( Rel s -> ( s = (/) <-> dom s = (/) ) ) |
18 |
16 17
|
syl |
|- ( s C_ ( A X. B ) -> ( s = (/) <-> dom s = (/) ) ) |
19 |
18
|
necon3bid |
|- ( s C_ ( A X. B ) -> ( s =/= (/) <-> dom s =/= (/) ) ) |
20 |
19
|
biimpa |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> dom s =/= (/) ) |
21 |
13 20
|
jca |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> ( dom s C_ A /\ dom s =/= (/) ) ) |
22 |
|
df-fr |
|- ( R Fr A <-> A. v ( ( v C_ A /\ v =/= (/) ) -> E. a e. v A. c e. v -. c R a ) ) |
23 |
|
vex |
|- s e. _V |
24 |
23
|
dmex |
|- dom s e. _V |
25 |
|
sseq1 |
|- ( v = dom s -> ( v C_ A <-> dom s C_ A ) ) |
26 |
|
neeq1 |
|- ( v = dom s -> ( v =/= (/) <-> dom s =/= (/) ) ) |
27 |
25 26
|
anbi12d |
|- ( v = dom s -> ( ( v C_ A /\ v =/= (/) ) <-> ( dom s C_ A /\ dom s =/= (/) ) ) ) |
28 |
|
raleq |
|- ( v = dom s -> ( A. c e. v -. c R a <-> A. c e. dom s -. c R a ) ) |
29 |
28
|
rexeqbi1dv |
|- ( v = dom s -> ( E. a e. v A. c e. v -. c R a <-> E. a e. dom s A. c e. dom s -. c R a ) ) |
30 |
27 29
|
imbi12d |
|- ( v = dom s -> ( ( ( v C_ A /\ v =/= (/) ) -> E. a e. v A. c e. v -. c R a ) <-> ( ( dom s C_ A /\ dom s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) ) |
31 |
24 30
|
spcv |
|- ( A. v ( ( v C_ A /\ v =/= (/) ) -> E. a e. v A. c e. v -. c R a ) -> ( ( dom s C_ A /\ dom s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) |
32 |
22 31
|
sylbi |
|- ( R Fr A -> ( ( dom s C_ A /\ dom s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) |
33 |
21 32
|
syl5 |
|- ( R Fr A -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) |
34 |
33
|
adantr |
|- ( ( R Fr A /\ S Fr B ) -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) |
35 |
|
imassrn |
|- ( s " { a } ) C_ ran s |
36 |
|
xpeq0 |
|- ( ( A X. B ) = (/) <-> ( A = (/) \/ B = (/) ) ) |
37 |
36
|
biimpri |
|- ( ( A = (/) \/ B = (/) ) -> ( A X. B ) = (/) ) |
38 |
37
|
orcs |
|- ( A = (/) -> ( A X. B ) = (/) ) |
39 |
|
sseq2 |
|- ( ( A X. B ) = (/) -> ( s C_ ( A X. B ) <-> s C_ (/) ) ) |
40 |
|
ss0 |
|- ( s C_ (/) -> s = (/) ) |
41 |
39 40
|
syl6bi |
|- ( ( A X. B ) = (/) -> ( s C_ ( A X. B ) -> s = (/) ) ) |
42 |
38 41
|
syl |
|- ( A = (/) -> ( s C_ ( A X. B ) -> s = (/) ) ) |
43 |
|
rneq |
|- ( s = (/) -> ran s = ran (/) ) |
44 |
|
rn0 |
|- ran (/) = (/) |
45 |
|
0ss |
|- (/) C_ B |
46 |
44 45
|
eqsstri |
|- ran (/) C_ B |
47 |
43 46
|
eqsstrdi |
|- ( s = (/) -> ran s C_ B ) |
48 |
42 47
|
syl6 |
|- ( A = (/) -> ( s C_ ( A X. B ) -> ran s C_ B ) ) |
49 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. B ) = B ) |
50 |
|
rnss |
|- ( s C_ ( A X. B ) -> ran s C_ ran ( A X. B ) ) |
51 |
|
sseq2 |
|- ( ran ( A X. B ) = B -> ( ran s C_ ran ( A X. B ) <-> ran s C_ B ) ) |
52 |
50 51
|
syl5ib |
|- ( ran ( A X. B ) = B -> ( s C_ ( A X. B ) -> ran s C_ B ) ) |
53 |
49 52
|
syl |
|- ( A =/= (/) -> ( s C_ ( A X. B ) -> ran s C_ B ) ) |
54 |
48 53
|
pm2.61ine |
|- ( s C_ ( A X. B ) -> ran s C_ B ) |
55 |
35 54
|
sstrid |
|- ( s C_ ( A X. B ) -> ( s " { a } ) C_ B ) |
56 |
|
vex |
|- a e. _V |
57 |
56
|
eldm |
|- ( a e. dom s <-> E. b a s b ) |
58 |
|
vex |
|- b e. _V |
59 |
56 58
|
elimasn |
|- ( b e. ( s " { a } ) <-> <. a , b >. e. s ) |
60 |
|
df-br |
|- ( a s b <-> <. a , b >. e. s ) |
61 |
59 60
|
bitr4i |
|- ( b e. ( s " { a } ) <-> a s b ) |
62 |
|
ne0i |
|- ( b e. ( s " { a } ) -> ( s " { a } ) =/= (/) ) |
63 |
61 62
|
sylbir |
|- ( a s b -> ( s " { a } ) =/= (/) ) |
64 |
63
|
exlimiv |
|- ( E. b a s b -> ( s " { a } ) =/= (/) ) |
65 |
57 64
|
sylbi |
|- ( a e. dom s -> ( s " { a } ) =/= (/) ) |
66 |
|
df-fr |
|- ( S Fr B <-> A. v ( ( v C_ B /\ v =/= (/) ) -> E. b e. v A. d e. v -. d S b ) ) |
67 |
23
|
imaex |
|- ( s " { a } ) e. _V |
68 |
|
sseq1 |
|- ( v = ( s " { a } ) -> ( v C_ B <-> ( s " { a } ) C_ B ) ) |
69 |
|
neeq1 |
|- ( v = ( s " { a } ) -> ( v =/= (/) <-> ( s " { a } ) =/= (/) ) ) |
70 |
68 69
|
anbi12d |
|- ( v = ( s " { a } ) -> ( ( v C_ B /\ v =/= (/) ) <-> ( ( s " { a } ) C_ B /\ ( s " { a } ) =/= (/) ) ) ) |
71 |
|
raleq |
|- ( v = ( s " { a } ) -> ( A. d e. v -. d S b <-> A. d e. ( s " { a } ) -. d S b ) ) |
72 |
71
|
rexeqbi1dv |
|- ( v = ( s " { a } ) -> ( E. b e. v A. d e. v -. d S b <-> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) |
73 |
70 72
|
imbi12d |
|- ( v = ( s " { a } ) -> ( ( ( v C_ B /\ v =/= (/) ) -> E. b e. v A. d e. v -. d S b ) <-> ( ( ( s " { a } ) C_ B /\ ( s " { a } ) =/= (/) ) -> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) ) |
74 |
67 73
|
spcv |
|- ( A. v ( ( v C_ B /\ v =/= (/) ) -> E. b e. v A. d e. v -. d S b ) -> ( ( ( s " { a } ) C_ B /\ ( s " { a } ) =/= (/) ) -> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) |
75 |
66 74
|
sylbi |
|- ( S Fr B -> ( ( ( s " { a } ) C_ B /\ ( s " { a } ) =/= (/) ) -> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) |
76 |
55 65 75
|
syl2ani |
|- ( S Fr B -> ( ( s C_ ( A X. B ) /\ a e. dom s ) -> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) |
77 |
|
1stdm |
|- ( ( Rel s /\ w e. s ) -> ( 1st ` w ) e. dom s ) |
78 |
|
breq1 |
|- ( c = ( 1st ` w ) -> ( c R a <-> ( 1st ` w ) R a ) ) |
79 |
78
|
notbid |
|- ( c = ( 1st ` w ) -> ( -. c R a <-> -. ( 1st ` w ) R a ) ) |
80 |
79
|
rspccv |
|- ( A. c e. dom s -. c R a -> ( ( 1st ` w ) e. dom s -> -. ( 1st ` w ) R a ) ) |
81 |
77 80
|
syl5 |
|- ( A. c e. dom s -. c R a -> ( ( Rel s /\ w e. s ) -> -. ( 1st ` w ) R a ) ) |
82 |
81
|
expd |
|- ( A. c e. dom s -. c R a -> ( Rel s -> ( w e. s -> -. ( 1st ` w ) R a ) ) ) |
83 |
82
|
impcom |
|- ( ( Rel s /\ A. c e. dom s -. c R a ) -> ( w e. s -> -. ( 1st ` w ) R a ) ) |
84 |
83
|
adantr |
|- ( ( ( Rel s /\ A. c e. dom s -. c R a ) /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> -. ( 1st ` w ) R a ) ) |
85 |
|
elrel |
|- ( ( Rel s /\ w e. s ) -> E. t E. u w = <. t , u >. ) |
86 |
85
|
ex |
|- ( Rel s -> ( w e. s -> E. t E. u w = <. t , u >. ) ) |
87 |
86
|
adantr |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> E. t E. u w = <. t , u >. ) ) |
88 |
|
vex |
|- u e. _V |
89 |
56 88
|
elimasn |
|- ( u e. ( s " { a } ) <-> <. a , u >. e. s ) |
90 |
|
breq1 |
|- ( d = u -> ( d S b <-> u S b ) ) |
91 |
90
|
notbid |
|- ( d = u -> ( -. d S b <-> -. u S b ) ) |
92 |
91
|
rspccv |
|- ( A. d e. ( s " { a } ) -. d S b -> ( u e. ( s " { a } ) -> -. u S b ) ) |
93 |
89 92
|
syl5bir |
|- ( A. d e. ( s " { a } ) -. d S b -> ( <. a , u >. e. s -> -. u S b ) ) |
94 |
93
|
adantl |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( <. a , u >. e. s -> -. u S b ) ) |
95 |
|
opeq1 |
|- ( t = a -> <. t , u >. = <. a , u >. ) |
96 |
95
|
eleq1d |
|- ( t = a -> ( <. t , u >. e. s <-> <. a , u >. e. s ) ) |
97 |
96
|
imbi1d |
|- ( t = a -> ( ( <. t , u >. e. s -> -. u S b ) <-> ( <. a , u >. e. s -> -. u S b ) ) ) |
98 |
94 97
|
syl5ibr |
|- ( t = a -> ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( <. t , u >. e. s -> -. u S b ) ) ) |
99 |
98
|
com3l |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( <. t , u >. e. s -> ( t = a -> -. u S b ) ) ) |
100 |
|
eleq1 |
|- ( w = <. t , u >. -> ( w e. s <-> <. t , u >. e. s ) ) |
101 |
|
vex |
|- t e. _V |
102 |
101 88
|
op1std |
|- ( w = <. t , u >. -> ( 1st ` w ) = t ) |
103 |
102
|
eqeq1d |
|- ( w = <. t , u >. -> ( ( 1st ` w ) = a <-> t = a ) ) |
104 |
101 88
|
op2ndd |
|- ( w = <. t , u >. -> ( 2nd ` w ) = u ) |
105 |
104
|
breq1d |
|- ( w = <. t , u >. -> ( ( 2nd ` w ) S b <-> u S b ) ) |
106 |
105
|
notbid |
|- ( w = <. t , u >. -> ( -. ( 2nd ` w ) S b <-> -. u S b ) ) |
107 |
103 106
|
imbi12d |
|- ( w = <. t , u >. -> ( ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) <-> ( t = a -> -. u S b ) ) ) |
108 |
100 107
|
imbi12d |
|- ( w = <. t , u >. -> ( ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) <-> ( <. t , u >. e. s -> ( t = a -> -. u S b ) ) ) ) |
109 |
99 108
|
syl5ibr |
|- ( w = <. t , u >. -> ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
110 |
109
|
exlimivv |
|- ( E. t E. u w = <. t , u >. -> ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
111 |
110
|
com3l |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( E. t E. u w = <. t , u >. -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
112 |
87 111
|
mpdd |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
113 |
112
|
adantlr |
|- ( ( ( Rel s /\ A. c e. dom s -. c R a ) /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
114 |
84 113
|
jcad |
|- ( ( ( Rel s /\ A. c e. dom s -. c R a ) /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
115 |
114
|
ralrimiv |
|- ( ( ( Rel s /\ A. c e. dom s -. c R a ) /\ A. d e. ( s " { a } ) -. d S b ) -> A. w e. s ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
116 |
115
|
ex |
|- ( ( Rel s /\ A. c e. dom s -. c R a ) -> ( A. d e. ( s " { a } ) -. d S b -> A. w e. s ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
117 |
16 116
|
sylan |
|- ( ( s C_ ( A X. B ) /\ A. c e. dom s -. c R a ) -> ( A. d e. ( s " { a } ) -. d S b -> A. w e. s ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
118 |
|
olc |
|- ( ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) -> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
119 |
118
|
ralimi |
|- ( A. w e. s ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) -> A. w e. s ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
120 |
117 119
|
syl6 |
|- ( ( s C_ ( A X. B ) /\ A. c e. dom s -. c R a ) -> ( A. d e. ( s " { a } ) -. d S b -> A. w e. s ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) ) |
121 |
|
ianor |
|- ( -. ( ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) /\ ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) <-> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) |
122 |
|
vex |
|- w e. _V |
123 |
|
opex |
|- <. a , b >. e. _V |
124 |
|
eleq1 |
|- ( x = w -> ( x e. ( A X. B ) <-> w e. ( A X. B ) ) ) |
125 |
124
|
anbi1d |
|- ( x = w -> ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) <-> ( w e. ( A X. B ) /\ y e. ( A X. B ) ) ) ) |
126 |
|
fveq2 |
|- ( x = w -> ( 1st ` x ) = ( 1st ` w ) ) |
127 |
126
|
breq1d |
|- ( x = w -> ( ( 1st ` x ) R ( 1st ` y ) <-> ( 1st ` w ) R ( 1st ` y ) ) ) |
128 |
126
|
eqeq1d |
|- ( x = w -> ( ( 1st ` x ) = ( 1st ` y ) <-> ( 1st ` w ) = ( 1st ` y ) ) ) |
129 |
|
fveq2 |
|- ( x = w -> ( 2nd ` x ) = ( 2nd ` w ) ) |
130 |
129
|
breq1d |
|- ( x = w -> ( ( 2nd ` x ) S ( 2nd ` y ) <-> ( 2nd ` w ) S ( 2nd ` y ) ) ) |
131 |
128 130
|
anbi12d |
|- ( x = w -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) <-> ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) ) |
132 |
127 131
|
orbi12d |
|- ( x = w -> ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) <-> ( ( 1st ` w ) R ( 1st ` y ) \/ ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) ) ) |
133 |
125 132
|
anbi12d |
|- ( x = w -> ( ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) <-> ( ( w e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` w ) R ( 1st ` y ) \/ ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) ) ) ) |
134 |
|
eleq1 |
|- ( y = <. a , b >. -> ( y e. ( A X. B ) <-> <. a , b >. e. ( A X. B ) ) ) |
135 |
134
|
anbi2d |
|- ( y = <. a , b >. -> ( ( w e. ( A X. B ) /\ y e. ( A X. B ) ) <-> ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) ) ) |
136 |
56 58
|
op1std |
|- ( y = <. a , b >. -> ( 1st ` y ) = a ) |
137 |
136
|
breq2d |
|- ( y = <. a , b >. -> ( ( 1st ` w ) R ( 1st ` y ) <-> ( 1st ` w ) R a ) ) |
138 |
136
|
eqeq2d |
|- ( y = <. a , b >. -> ( ( 1st ` w ) = ( 1st ` y ) <-> ( 1st ` w ) = a ) ) |
139 |
56 58
|
op2ndd |
|- ( y = <. a , b >. -> ( 2nd ` y ) = b ) |
140 |
139
|
breq2d |
|- ( y = <. a , b >. -> ( ( 2nd ` w ) S ( 2nd ` y ) <-> ( 2nd ` w ) S b ) ) |
141 |
138 140
|
anbi12d |
|- ( y = <. a , b >. -> ( ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) <-> ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) |
142 |
137 141
|
orbi12d |
|- ( y = <. a , b >. -> ( ( ( 1st ` w ) R ( 1st ` y ) \/ ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) <-> ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) |
143 |
135 142
|
anbi12d |
|- ( y = <. a , b >. -> ( ( ( w e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` w ) R ( 1st ` y ) \/ ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) ) <-> ( ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) /\ ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) ) |
144 |
122 123 133 143 1
|
brab |
|- ( w T <. a , b >. <-> ( ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) /\ ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) |
145 |
121 144
|
xchnxbir |
|- ( -. w T <. a , b >. <-> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) |
146 |
|
ioran |
|- ( -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) <-> ( -. ( 1st ` w ) R a /\ -. ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) |
147 |
|
ianor |
|- ( -. ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) <-> ( -. ( 1st ` w ) = a \/ -. ( 2nd ` w ) S b ) ) |
148 |
|
pm4.62 |
|- ( ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) <-> ( -. ( 1st ` w ) = a \/ -. ( 2nd ` w ) S b ) ) |
149 |
147 148
|
bitr4i |
|- ( -. ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) <-> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) |
150 |
149
|
anbi2i |
|- ( ( -. ( 1st ` w ) R a /\ -. ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) <-> ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
151 |
146 150
|
bitri |
|- ( -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) <-> ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
152 |
151
|
orbi2i |
|- ( ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) <-> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
153 |
145 152
|
bitri |
|- ( -. w T <. a , b >. <-> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
154 |
153
|
ralbii |
|- ( A. w e. s -. w T <. a , b >. <-> A. w e. s ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
155 |
120 154
|
syl6ibr |
|- ( ( s C_ ( A X. B ) /\ A. c e. dom s -. c R a ) -> ( A. d e. ( s " { a } ) -. d S b -> A. w e. s -. w T <. a , b >. ) ) |
156 |
155
|
reximdv |
|- ( ( s C_ ( A X. B ) /\ A. c e. dom s -. c R a ) -> ( E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) |
157 |
156
|
ex |
|- ( s C_ ( A X. B ) -> ( A. c e. dom s -. c R a -> ( E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) ) |
158 |
157
|
com23 |
|- ( s C_ ( A X. B ) -> ( E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b -> ( A. c e. dom s -. c R a -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) ) |
159 |
158
|
adantr |
|- ( ( s C_ ( A X. B ) /\ a e. dom s ) -> ( E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b -> ( A. c e. dom s -. c R a -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) ) |
160 |
76 159
|
sylcom |
|- ( S Fr B -> ( ( s C_ ( A X. B ) /\ a e. dom s ) -> ( A. c e. dom s -. c R a -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) ) |
161 |
160
|
impl |
|- ( ( ( S Fr B /\ s C_ ( A X. B ) ) /\ a e. dom s ) -> ( A. c e. dom s -. c R a -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) |
162 |
161
|
expimpd |
|- ( ( S Fr B /\ s C_ ( A X. B ) ) -> ( ( a e. dom s /\ A. c e. dom s -. c R a ) -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) |
163 |
162
|
3adant3 |
|- ( ( S Fr B /\ s C_ ( A X. B ) /\ s =/= (/) ) -> ( ( a e. dom s /\ A. c e. dom s -. c R a ) -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) |
164 |
|
resss |
|- ( s |` { a } ) C_ s |
165 |
|
df-rex |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. <-> E. b ( b e. ( s " { a } ) /\ A. w e. s -. w T <. a , b >. ) ) |
166 |
|
eqid |
|- <. a , b >. = <. a , b >. |
167 |
|
eqeq1 |
|- ( z = <. a , b >. -> ( z = <. a , b >. <-> <. a , b >. = <. a , b >. ) ) |
168 |
|
breq2 |
|- ( z = <. a , b >. -> ( w T z <-> w T <. a , b >. ) ) |
169 |
168
|
notbid |
|- ( z = <. a , b >. -> ( -. w T z <-> -. w T <. a , b >. ) ) |
170 |
169
|
ralbidv |
|- ( z = <. a , b >. -> ( A. w e. s -. w T z <-> A. w e. s -. w T <. a , b >. ) ) |
171 |
170
|
anbi2d |
|- ( z = <. a , b >. -> ( ( <. a , b >. e. s /\ A. w e. s -. w T z ) <-> ( <. a , b >. e. s /\ A. w e. s -. w T <. a , b >. ) ) ) |
172 |
167 171
|
anbi12d |
|- ( z = <. a , b >. -> ( ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) <-> ( <. a , b >. = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T <. a , b >. ) ) ) ) |
173 |
123 172
|
spcev |
|- ( ( <. a , b >. = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T <. a , b >. ) ) -> E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
174 |
166 173
|
mpan |
|- ( ( <. a , b >. e. s /\ A. w e. s -. w T <. a , b >. ) -> E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
175 |
59 174
|
sylanb |
|- ( ( b e. ( s " { a } ) /\ A. w e. s -. w T <. a , b >. ) -> E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
176 |
175
|
eximi |
|- ( E. b ( b e. ( s " { a } ) /\ A. w e. s -. w T <. a , b >. ) -> E. b E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
177 |
165 176
|
sylbi |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. -> E. b E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
178 |
|
excom |
|- ( E. b E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) <-> E. z E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
179 |
177 178
|
sylib |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. -> E. z E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
180 |
|
df-rex |
|- ( E. z e. ( s |` { a } ) A. w e. s -. w T z <-> E. z ( z e. ( s |` { a } ) /\ A. w e. s -. w T z ) ) |
181 |
56
|
elsnres |
|- ( z e. ( s |` { a } ) <-> E. b ( z = <. a , b >. /\ <. a , b >. e. s ) ) |
182 |
181
|
anbi1i |
|- ( ( z e. ( s |` { a } ) /\ A. w e. s -. w T z ) <-> ( E. b ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) ) |
183 |
|
19.41v |
|- ( E. b ( ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) <-> ( E. b ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) ) |
184 |
|
anass |
|- ( ( ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) <-> ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
185 |
184
|
exbii |
|- ( E. b ( ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) <-> E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
186 |
182 183 185
|
3bitr2i |
|- ( ( z e. ( s |` { a } ) /\ A. w e. s -. w T z ) <-> E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
187 |
186
|
exbii |
|- ( E. z ( z e. ( s |` { a } ) /\ A. w e. s -. w T z ) <-> E. z E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
188 |
180 187
|
bitri |
|- ( E. z e. ( s |` { a } ) A. w e. s -. w T z <-> E. z E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
189 |
179 188
|
sylibr |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. -> E. z e. ( s |` { a } ) A. w e. s -. w T z ) |
190 |
|
ssrexv |
|- ( ( s |` { a } ) C_ s -> ( E. z e. ( s |` { a } ) A. w e. s -. w T z -> E. z e. s A. w e. s -. w T z ) ) |
191 |
164 189 190
|
mpsyl |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. -> E. z e. s A. w e. s -. w T z ) |
192 |
163 191
|
syl6 |
|- ( ( S Fr B /\ s C_ ( A X. B ) /\ s =/= (/) ) -> ( ( a e. dom s /\ A. c e. dom s -. c R a ) -> E. z e. s A. w e. s -. w T z ) ) |
193 |
192
|
expd |
|- ( ( S Fr B /\ s C_ ( A X. B ) /\ s =/= (/) ) -> ( a e. dom s -> ( A. c e. dom s -. c R a -> E. z e. s A. w e. s -. w T z ) ) ) |
194 |
193
|
rexlimdv |
|- ( ( S Fr B /\ s C_ ( A X. B ) /\ s =/= (/) ) -> ( E. a e. dom s A. c e. dom s -. c R a -> E. z e. s A. w e. s -. w T z ) ) |
195 |
194
|
3expib |
|- ( S Fr B -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> ( E. a e. dom s A. c e. dom s -. c R a -> E. z e. s A. w e. s -. w T z ) ) ) |
196 |
195
|
adantl |
|- ( ( R Fr A /\ S Fr B ) -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> ( E. a e. dom s A. c e. dom s -. c R a -> E. z e. s A. w e. s -. w T z ) ) ) |
197 |
34 196
|
mpdd |
|- ( ( R Fr A /\ S Fr B ) -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. z e. s A. w e. s -. w T z ) ) |
198 |
197
|
alrimiv |
|- ( ( R Fr A /\ S Fr B ) -> A. s ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. z e. s A. w e. s -. w T z ) ) |
199 |
|
df-fr |
|- ( T Fr ( A X. B ) <-> A. s ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. z e. s A. w e. s -. w T z ) ) |
200 |
198 199
|
sylibr |
|- ( ( R Fr A /\ S Fr B ) -> T Fr ( A X. B ) ) |