| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fseq1m1p1.1 |  |-  H = { <. N , B >. } | 
						
							| 2 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 3 |  | eqid |  |-  { <. ( ( N - 1 ) + 1 ) , B >. } = { <. ( ( N - 1 ) + 1 ) , B >. } | 
						
							| 4 | 3 | fseq1p1m1 |  |-  ( ( N - 1 ) e. NN0 -> ( ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) ) <-> ( G : ( 1 ... ( ( N - 1 ) + 1 ) ) --> A /\ ( G ` ( ( N - 1 ) + 1 ) ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( N e. NN -> ( ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) ) <-> ( G : ( 1 ... ( ( N - 1 ) + 1 ) ) --> A /\ ( G ` ( ( N - 1 ) + 1 ) ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) ) ) | 
						
							| 6 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 9 | 6 7 8 | sylancl |  |-  ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 10 | 9 | opeq1d |  |-  ( N e. NN -> <. ( ( N - 1 ) + 1 ) , B >. = <. N , B >. ) | 
						
							| 11 | 10 | sneqd |  |-  ( N e. NN -> { <. ( ( N - 1 ) + 1 ) , B >. } = { <. N , B >. } ) | 
						
							| 12 | 11 1 | eqtr4di |  |-  ( N e. NN -> { <. ( ( N - 1 ) + 1 ) , B >. } = H ) | 
						
							| 13 | 12 | uneq2d |  |-  ( N e. NN -> ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) = ( F u. H ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( N e. NN -> ( G = ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) <-> G = ( F u. H ) ) ) | 
						
							| 15 | 14 | 3anbi3d |  |-  ( N e. NN -> ( ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. { <. ( ( N - 1 ) + 1 ) , B >. } ) ) <-> ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. H ) ) ) ) | 
						
							| 16 | 9 | oveq2d |  |-  ( N e. NN -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) | 
						
							| 17 | 16 | feq2d |  |-  ( N e. NN -> ( G : ( 1 ... ( ( N - 1 ) + 1 ) ) --> A <-> G : ( 1 ... N ) --> A ) ) | 
						
							| 18 | 9 | fveqeq2d |  |-  ( N e. NN -> ( ( G ` ( ( N - 1 ) + 1 ) ) = B <-> ( G ` N ) = B ) ) | 
						
							| 19 | 17 18 | 3anbi12d |  |-  ( N e. NN -> ( ( G : ( 1 ... ( ( N - 1 ) + 1 ) ) --> A /\ ( G ` ( ( N - 1 ) + 1 ) ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) <-> ( G : ( 1 ... N ) --> A /\ ( G ` N ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) ) ) | 
						
							| 20 | 5 15 19 | 3bitr3d |  |-  ( N e. NN -> ( ( F : ( 1 ... ( N - 1 ) ) --> A /\ B e. A /\ G = ( F u. H ) ) <-> ( G : ( 1 ... N ) --> A /\ ( G ` N ) = B /\ F = ( G |` ( 1 ... ( N - 1 ) ) ) ) ) ) |