| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fseq1p1m1.1 |  |-  H = { <. ( N + 1 ) , B >. } | 
						
							| 2 |  | simpr1 |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> F : ( 1 ... N ) --> A ) | 
						
							| 3 |  | nn0p1nn |  |-  ( N e. NN0 -> ( N + 1 ) e. NN ) | 
						
							| 4 | 3 | adantr |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( N + 1 ) e. NN ) | 
						
							| 5 |  | simpr2 |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> B e. A ) | 
						
							| 6 |  | fsng |  |-  ( ( ( N + 1 ) e. NN /\ B e. A ) -> ( H : { ( N + 1 ) } --> { B } <-> H = { <. ( N + 1 ) , B >. } ) ) | 
						
							| 7 | 1 6 | mpbiri |  |-  ( ( ( N + 1 ) e. NN /\ B e. A ) -> H : { ( N + 1 ) } --> { B } ) | 
						
							| 8 | 4 5 7 | syl2anc |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> H : { ( N + 1 ) } --> { B } ) | 
						
							| 9 | 5 | snssd |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> { B } C_ A ) | 
						
							| 10 | 8 9 | fssd |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> H : { ( N + 1 ) } --> A ) | 
						
							| 11 |  | fzp1disj |  |-  ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) | 
						
							| 12 | 11 | a1i |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) ) | 
						
							| 13 | 2 10 12 | fun2d |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F u. H ) : ( ( 1 ... N ) u. { ( N + 1 ) } ) --> A ) | 
						
							| 14 |  | 1z |  |-  1 e. ZZ | 
						
							| 15 |  | simpl |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> N e. NN0 ) | 
						
							| 16 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 17 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 18 | 17 | fveq2i |  |-  ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) | 
						
							| 19 | 16 18 | eqtr4i |  |-  NN0 = ( ZZ>= ` ( 1 - 1 ) ) | 
						
							| 20 | 15 19 | eleqtrdi |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> N e. ( ZZ>= ` ( 1 - 1 ) ) ) | 
						
							| 21 |  | fzsuc2 |  |-  ( ( 1 e. ZZ /\ N e. ( ZZ>= ` ( 1 - 1 ) ) ) -> ( 1 ... ( N + 1 ) ) = ( ( 1 ... N ) u. { ( N + 1 ) } ) ) | 
						
							| 22 | 14 20 21 | sylancr |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( 1 ... ( N + 1 ) ) = ( ( 1 ... N ) u. { ( N + 1 ) } ) ) | 
						
							| 23 | 22 | eqcomd |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( 1 ... N ) u. { ( N + 1 ) } ) = ( 1 ... ( N + 1 ) ) ) | 
						
							| 24 | 23 | feq2d |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F u. H ) : ( ( 1 ... N ) u. { ( N + 1 ) } ) --> A <-> ( F u. H ) : ( 1 ... ( N + 1 ) ) --> A ) ) | 
						
							| 25 | 13 24 | mpbid |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F u. H ) : ( 1 ... ( N + 1 ) ) --> A ) | 
						
							| 26 |  | simpr3 |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> G = ( F u. H ) ) | 
						
							| 27 | 26 | feq1d |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G : ( 1 ... ( N + 1 ) ) --> A <-> ( F u. H ) : ( 1 ... ( N + 1 ) ) --> A ) ) | 
						
							| 28 | 25 27 | mpbird |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> G : ( 1 ... ( N + 1 ) ) --> A ) | 
						
							| 29 |  | ovex |  |-  ( N + 1 ) e. _V | 
						
							| 30 | 29 | snid |  |-  ( N + 1 ) e. { ( N + 1 ) } | 
						
							| 31 |  | fvres |  |-  ( ( N + 1 ) e. { ( N + 1 ) } -> ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = ( G ` ( N + 1 ) ) ) | 
						
							| 32 | 30 31 | ax-mp |  |-  ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = ( G ` ( N + 1 ) ) | 
						
							| 33 | 26 | reseq1d |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G |` { ( N + 1 ) } ) = ( ( F u. H ) |` { ( N + 1 ) } ) ) | 
						
							| 34 |  | ffn |  |-  ( F : ( 1 ... N ) --> A -> F Fn ( 1 ... N ) ) | 
						
							| 35 |  | fnresdisj |  |-  ( F Fn ( 1 ... N ) -> ( ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) <-> ( F |` { ( N + 1 ) } ) = (/) ) ) | 
						
							| 36 | 2 34 35 | 3syl |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) <-> ( F |` { ( N + 1 ) } ) = (/) ) ) | 
						
							| 37 | 12 36 | mpbid |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F |` { ( N + 1 ) } ) = (/) ) | 
						
							| 38 | 37 | uneq1d |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F |` { ( N + 1 ) } ) u. ( H |` { ( N + 1 ) } ) ) = ( (/) u. ( H |` { ( N + 1 ) } ) ) ) | 
						
							| 39 |  | resundir |  |-  ( ( F u. H ) |` { ( N + 1 ) } ) = ( ( F |` { ( N + 1 ) } ) u. ( H |` { ( N + 1 ) } ) ) | 
						
							| 40 |  | uncom |  |-  ( (/) u. ( H |` { ( N + 1 ) } ) ) = ( ( H |` { ( N + 1 ) } ) u. (/) ) | 
						
							| 41 |  | un0 |  |-  ( ( H |` { ( N + 1 ) } ) u. (/) ) = ( H |` { ( N + 1 ) } ) | 
						
							| 42 | 40 41 | eqtr2i |  |-  ( H |` { ( N + 1 ) } ) = ( (/) u. ( H |` { ( N + 1 ) } ) ) | 
						
							| 43 | 38 39 42 | 3eqtr4g |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F u. H ) |` { ( N + 1 ) } ) = ( H |` { ( N + 1 ) } ) ) | 
						
							| 44 |  | ffn |  |-  ( H : { ( N + 1 ) } --> A -> H Fn { ( N + 1 ) } ) | 
						
							| 45 |  | fnresdm |  |-  ( H Fn { ( N + 1 ) } -> ( H |` { ( N + 1 ) } ) = H ) | 
						
							| 46 | 10 44 45 | 3syl |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( H |` { ( N + 1 ) } ) = H ) | 
						
							| 47 | 33 43 46 | 3eqtrd |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G |` { ( N + 1 ) } ) = H ) | 
						
							| 48 | 47 | fveq1d |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = ( H ` ( N + 1 ) ) ) | 
						
							| 49 | 1 | fveq1i |  |-  ( H ` ( N + 1 ) ) = ( { <. ( N + 1 ) , B >. } ` ( N + 1 ) ) | 
						
							| 50 |  | fvsng |  |-  ( ( ( N + 1 ) e. NN /\ B e. A ) -> ( { <. ( N + 1 ) , B >. } ` ( N + 1 ) ) = B ) | 
						
							| 51 | 49 50 | eqtrid |  |-  ( ( ( N + 1 ) e. NN /\ B e. A ) -> ( H ` ( N + 1 ) ) = B ) | 
						
							| 52 | 4 5 51 | syl2anc |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( H ` ( N + 1 ) ) = B ) | 
						
							| 53 | 48 52 | eqtrd |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = B ) | 
						
							| 54 | 32 53 | eqtr3id |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G ` ( N + 1 ) ) = B ) | 
						
							| 55 | 26 | reseq1d |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G |` ( 1 ... N ) ) = ( ( F u. H ) |` ( 1 ... N ) ) ) | 
						
							| 56 |  | incom |  |-  ( { ( N + 1 ) } i^i ( 1 ... N ) ) = ( ( 1 ... N ) i^i { ( N + 1 ) } ) | 
						
							| 57 | 56 12 | eqtrid |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( { ( N + 1 ) } i^i ( 1 ... N ) ) = (/) ) | 
						
							| 58 |  | ffn |  |-  ( H : { ( N + 1 ) } --> { B } -> H Fn { ( N + 1 ) } ) | 
						
							| 59 |  | fnresdisj |  |-  ( H Fn { ( N + 1 ) } -> ( ( { ( N + 1 ) } i^i ( 1 ... N ) ) = (/) <-> ( H |` ( 1 ... N ) ) = (/) ) ) | 
						
							| 60 | 8 58 59 | 3syl |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( { ( N + 1 ) } i^i ( 1 ... N ) ) = (/) <-> ( H |` ( 1 ... N ) ) = (/) ) ) | 
						
							| 61 | 57 60 | mpbid |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( H |` ( 1 ... N ) ) = (/) ) | 
						
							| 62 | 61 | uneq2d |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F |` ( 1 ... N ) ) u. ( H |` ( 1 ... N ) ) ) = ( ( F |` ( 1 ... N ) ) u. (/) ) ) | 
						
							| 63 |  | resundir |  |-  ( ( F u. H ) |` ( 1 ... N ) ) = ( ( F |` ( 1 ... N ) ) u. ( H |` ( 1 ... N ) ) ) | 
						
							| 64 |  | un0 |  |-  ( ( F |` ( 1 ... N ) ) u. (/) ) = ( F |` ( 1 ... N ) ) | 
						
							| 65 | 64 | eqcomi |  |-  ( F |` ( 1 ... N ) ) = ( ( F |` ( 1 ... N ) ) u. (/) ) | 
						
							| 66 | 62 63 65 | 3eqtr4g |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F u. H ) |` ( 1 ... N ) ) = ( F |` ( 1 ... N ) ) ) | 
						
							| 67 |  | fnresdm |  |-  ( F Fn ( 1 ... N ) -> ( F |` ( 1 ... N ) ) = F ) | 
						
							| 68 | 2 34 67 | 3syl |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F |` ( 1 ... N ) ) = F ) | 
						
							| 69 | 55 66 68 | 3eqtrrd |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> F = ( G |` ( 1 ... N ) ) ) | 
						
							| 70 | 28 54 69 | 3jca |  |-  ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) | 
						
							| 71 |  | simpr1 |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> G : ( 1 ... ( N + 1 ) ) --> A ) | 
						
							| 72 |  | fzssp1 |  |-  ( 1 ... N ) C_ ( 1 ... ( N + 1 ) ) | 
						
							| 73 |  | fssres |  |-  ( ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( 1 ... N ) C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` ( 1 ... N ) ) : ( 1 ... N ) --> A ) | 
						
							| 74 | 71 72 73 | sylancl |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` ( 1 ... N ) ) : ( 1 ... N ) --> A ) | 
						
							| 75 |  | simpr3 |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> F = ( G |` ( 1 ... N ) ) ) | 
						
							| 76 | 75 | feq1d |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( F : ( 1 ... N ) --> A <-> ( G |` ( 1 ... N ) ) : ( 1 ... N ) --> A ) ) | 
						
							| 77 | 74 76 | mpbird |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> F : ( 1 ... N ) --> A ) | 
						
							| 78 |  | simpr2 |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G ` ( N + 1 ) ) = B ) | 
						
							| 79 | 3 | adantr |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( N + 1 ) e. NN ) | 
						
							| 80 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 81 | 79 80 | eleqtrdi |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 82 |  | eluzfz2 |  |-  ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) | 
						
							| 83 | 81 82 | syl |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) | 
						
							| 84 | 71 83 | ffvelcdmd |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G ` ( N + 1 ) ) e. A ) | 
						
							| 85 | 78 84 | eqeltrrd |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> B e. A ) | 
						
							| 86 |  | ffn |  |-  ( G : ( 1 ... ( N + 1 ) ) --> A -> G Fn ( 1 ... ( N + 1 ) ) ) | 
						
							| 87 | 71 86 | syl |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> G Fn ( 1 ... ( N + 1 ) ) ) | 
						
							| 88 |  | fnressn |  |-  ( ( G Fn ( 1 ... ( N + 1 ) ) /\ ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( G |` { ( N + 1 ) } ) = { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } ) | 
						
							| 89 | 87 83 88 | syl2anc |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` { ( N + 1 ) } ) = { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } ) | 
						
							| 90 |  | opeq2 |  |-  ( ( G ` ( N + 1 ) ) = B -> <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. = <. ( N + 1 ) , B >. ) | 
						
							| 91 | 90 | sneqd |  |-  ( ( G ` ( N + 1 ) ) = B -> { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } = { <. ( N + 1 ) , B >. } ) | 
						
							| 92 | 78 91 | syl |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } = { <. ( N + 1 ) , B >. } ) | 
						
							| 93 | 89 92 | eqtrd |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` { ( N + 1 ) } ) = { <. ( N + 1 ) , B >. } ) | 
						
							| 94 | 1 93 | eqtr4id |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> H = ( G |` { ( N + 1 ) } ) ) | 
						
							| 95 | 75 94 | uneq12d |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( F u. H ) = ( ( G |` ( 1 ... N ) ) u. ( G |` { ( N + 1 ) } ) ) ) | 
						
							| 96 |  | simpl |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> N e. NN0 ) | 
						
							| 97 | 96 19 | eleqtrdi |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> N e. ( ZZ>= ` ( 1 - 1 ) ) ) | 
						
							| 98 | 14 97 21 | sylancr |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( 1 ... ( N + 1 ) ) = ( ( 1 ... N ) u. { ( N + 1 ) } ) ) | 
						
							| 99 | 98 | reseq2d |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` ( 1 ... ( N + 1 ) ) ) = ( G |` ( ( 1 ... N ) u. { ( N + 1 ) } ) ) ) | 
						
							| 100 |  | resundi |  |-  ( G |` ( ( 1 ... N ) u. { ( N + 1 ) } ) ) = ( ( G |` ( 1 ... N ) ) u. ( G |` { ( N + 1 ) } ) ) | 
						
							| 101 | 99 100 | eqtr2di |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( ( G |` ( 1 ... N ) ) u. ( G |` { ( N + 1 ) } ) ) = ( G |` ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 102 |  | fnresdm |  |-  ( G Fn ( 1 ... ( N + 1 ) ) -> ( G |` ( 1 ... ( N + 1 ) ) ) = G ) | 
						
							| 103 | 71 86 102 | 3syl |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` ( 1 ... ( N + 1 ) ) ) = G ) | 
						
							| 104 | 95 101 103 | 3eqtrrd |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> G = ( F u. H ) ) | 
						
							| 105 | 77 85 104 | 3jca |  |-  ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) | 
						
							| 106 | 70 105 | impbida |  |-  ( N e. NN0 -> ( ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) <-> ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) ) |