Step |
Hyp |
Ref |
Expression |
1 |
|
fseq1p1m1.1 |
|- H = { <. ( N + 1 ) , B >. } |
2 |
|
simpr1 |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> F : ( 1 ... N ) --> A ) |
3 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
4 |
3
|
adantr |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( N + 1 ) e. NN ) |
5 |
|
simpr2 |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> B e. A ) |
6 |
|
fsng |
|- ( ( ( N + 1 ) e. NN /\ B e. A ) -> ( H : { ( N + 1 ) } --> { B } <-> H = { <. ( N + 1 ) , B >. } ) ) |
7 |
1 6
|
mpbiri |
|- ( ( ( N + 1 ) e. NN /\ B e. A ) -> H : { ( N + 1 ) } --> { B } ) |
8 |
4 5 7
|
syl2anc |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> H : { ( N + 1 ) } --> { B } ) |
9 |
5
|
snssd |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> { B } C_ A ) |
10 |
8 9
|
fssd |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> H : { ( N + 1 ) } --> A ) |
11 |
|
fzp1disj |
|- ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) |
12 |
11
|
a1i |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) ) |
13 |
2 10 12
|
fun2d |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F u. H ) : ( ( 1 ... N ) u. { ( N + 1 ) } ) --> A ) |
14 |
|
1z |
|- 1 e. ZZ |
15 |
|
simpl |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> N e. NN0 ) |
16 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
17 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
18 |
17
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
19 |
16 18
|
eqtr4i |
|- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
20 |
15 19
|
eleqtrdi |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> N e. ( ZZ>= ` ( 1 - 1 ) ) ) |
21 |
|
fzsuc2 |
|- ( ( 1 e. ZZ /\ N e. ( ZZ>= ` ( 1 - 1 ) ) ) -> ( 1 ... ( N + 1 ) ) = ( ( 1 ... N ) u. { ( N + 1 ) } ) ) |
22 |
14 20 21
|
sylancr |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( 1 ... ( N + 1 ) ) = ( ( 1 ... N ) u. { ( N + 1 ) } ) ) |
23 |
22
|
eqcomd |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( 1 ... N ) u. { ( N + 1 ) } ) = ( 1 ... ( N + 1 ) ) ) |
24 |
23
|
feq2d |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F u. H ) : ( ( 1 ... N ) u. { ( N + 1 ) } ) --> A <-> ( F u. H ) : ( 1 ... ( N + 1 ) ) --> A ) ) |
25 |
13 24
|
mpbid |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F u. H ) : ( 1 ... ( N + 1 ) ) --> A ) |
26 |
|
simpr3 |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> G = ( F u. H ) ) |
27 |
26
|
feq1d |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G : ( 1 ... ( N + 1 ) ) --> A <-> ( F u. H ) : ( 1 ... ( N + 1 ) ) --> A ) ) |
28 |
25 27
|
mpbird |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> G : ( 1 ... ( N + 1 ) ) --> A ) |
29 |
|
ovex |
|- ( N + 1 ) e. _V |
30 |
29
|
snid |
|- ( N + 1 ) e. { ( N + 1 ) } |
31 |
|
fvres |
|- ( ( N + 1 ) e. { ( N + 1 ) } -> ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = ( G ` ( N + 1 ) ) ) |
32 |
30 31
|
ax-mp |
|- ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = ( G ` ( N + 1 ) ) |
33 |
26
|
reseq1d |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G |` { ( N + 1 ) } ) = ( ( F u. H ) |` { ( N + 1 ) } ) ) |
34 |
|
ffn |
|- ( F : ( 1 ... N ) --> A -> F Fn ( 1 ... N ) ) |
35 |
|
fnresdisj |
|- ( F Fn ( 1 ... N ) -> ( ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) <-> ( F |` { ( N + 1 ) } ) = (/) ) ) |
36 |
2 34 35
|
3syl |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) <-> ( F |` { ( N + 1 ) } ) = (/) ) ) |
37 |
12 36
|
mpbid |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F |` { ( N + 1 ) } ) = (/) ) |
38 |
37
|
uneq1d |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F |` { ( N + 1 ) } ) u. ( H |` { ( N + 1 ) } ) ) = ( (/) u. ( H |` { ( N + 1 ) } ) ) ) |
39 |
|
resundir |
|- ( ( F u. H ) |` { ( N + 1 ) } ) = ( ( F |` { ( N + 1 ) } ) u. ( H |` { ( N + 1 ) } ) ) |
40 |
|
uncom |
|- ( (/) u. ( H |` { ( N + 1 ) } ) ) = ( ( H |` { ( N + 1 ) } ) u. (/) ) |
41 |
|
un0 |
|- ( ( H |` { ( N + 1 ) } ) u. (/) ) = ( H |` { ( N + 1 ) } ) |
42 |
40 41
|
eqtr2i |
|- ( H |` { ( N + 1 ) } ) = ( (/) u. ( H |` { ( N + 1 ) } ) ) |
43 |
38 39 42
|
3eqtr4g |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F u. H ) |` { ( N + 1 ) } ) = ( H |` { ( N + 1 ) } ) ) |
44 |
|
ffn |
|- ( H : { ( N + 1 ) } --> A -> H Fn { ( N + 1 ) } ) |
45 |
|
fnresdm |
|- ( H Fn { ( N + 1 ) } -> ( H |` { ( N + 1 ) } ) = H ) |
46 |
10 44 45
|
3syl |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( H |` { ( N + 1 ) } ) = H ) |
47 |
33 43 46
|
3eqtrd |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G |` { ( N + 1 ) } ) = H ) |
48 |
47
|
fveq1d |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = ( H ` ( N + 1 ) ) ) |
49 |
1
|
fveq1i |
|- ( H ` ( N + 1 ) ) = ( { <. ( N + 1 ) , B >. } ` ( N + 1 ) ) |
50 |
|
fvsng |
|- ( ( ( N + 1 ) e. NN /\ B e. A ) -> ( { <. ( N + 1 ) , B >. } ` ( N + 1 ) ) = B ) |
51 |
49 50
|
eqtrid |
|- ( ( ( N + 1 ) e. NN /\ B e. A ) -> ( H ` ( N + 1 ) ) = B ) |
52 |
4 5 51
|
syl2anc |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( H ` ( N + 1 ) ) = B ) |
53 |
48 52
|
eqtrd |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = B ) |
54 |
32 53
|
eqtr3id |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G ` ( N + 1 ) ) = B ) |
55 |
26
|
reseq1d |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G |` ( 1 ... N ) ) = ( ( F u. H ) |` ( 1 ... N ) ) ) |
56 |
|
incom |
|- ( { ( N + 1 ) } i^i ( 1 ... N ) ) = ( ( 1 ... N ) i^i { ( N + 1 ) } ) |
57 |
56 12
|
eqtrid |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( { ( N + 1 ) } i^i ( 1 ... N ) ) = (/) ) |
58 |
|
ffn |
|- ( H : { ( N + 1 ) } --> { B } -> H Fn { ( N + 1 ) } ) |
59 |
|
fnresdisj |
|- ( H Fn { ( N + 1 ) } -> ( ( { ( N + 1 ) } i^i ( 1 ... N ) ) = (/) <-> ( H |` ( 1 ... N ) ) = (/) ) ) |
60 |
8 58 59
|
3syl |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( { ( N + 1 ) } i^i ( 1 ... N ) ) = (/) <-> ( H |` ( 1 ... N ) ) = (/) ) ) |
61 |
57 60
|
mpbid |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( H |` ( 1 ... N ) ) = (/) ) |
62 |
61
|
uneq2d |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F |` ( 1 ... N ) ) u. ( H |` ( 1 ... N ) ) ) = ( ( F |` ( 1 ... N ) ) u. (/) ) ) |
63 |
|
resundir |
|- ( ( F u. H ) |` ( 1 ... N ) ) = ( ( F |` ( 1 ... N ) ) u. ( H |` ( 1 ... N ) ) ) |
64 |
|
un0 |
|- ( ( F |` ( 1 ... N ) ) u. (/) ) = ( F |` ( 1 ... N ) ) |
65 |
64
|
eqcomi |
|- ( F |` ( 1 ... N ) ) = ( ( F |` ( 1 ... N ) ) u. (/) ) |
66 |
62 63 65
|
3eqtr4g |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F u. H ) |` ( 1 ... N ) ) = ( F |` ( 1 ... N ) ) ) |
67 |
|
fnresdm |
|- ( F Fn ( 1 ... N ) -> ( F |` ( 1 ... N ) ) = F ) |
68 |
2 34 67
|
3syl |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F |` ( 1 ... N ) ) = F ) |
69 |
55 66 68
|
3eqtrrd |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> F = ( G |` ( 1 ... N ) ) ) |
70 |
28 54 69
|
3jca |
|- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) |
71 |
|
simpr1 |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> G : ( 1 ... ( N + 1 ) ) --> A ) |
72 |
|
fzssp1 |
|- ( 1 ... N ) C_ ( 1 ... ( N + 1 ) ) |
73 |
|
fssres |
|- ( ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( 1 ... N ) C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` ( 1 ... N ) ) : ( 1 ... N ) --> A ) |
74 |
71 72 73
|
sylancl |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` ( 1 ... N ) ) : ( 1 ... N ) --> A ) |
75 |
|
simpr3 |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> F = ( G |` ( 1 ... N ) ) ) |
76 |
75
|
feq1d |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( F : ( 1 ... N ) --> A <-> ( G |` ( 1 ... N ) ) : ( 1 ... N ) --> A ) ) |
77 |
74 76
|
mpbird |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> F : ( 1 ... N ) --> A ) |
78 |
|
simpr2 |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G ` ( N + 1 ) ) = B ) |
79 |
3
|
adantr |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( N + 1 ) e. NN ) |
80 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
81 |
79 80
|
eleqtrdi |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
82 |
|
eluzfz2 |
|- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) |
83 |
81 82
|
syl |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) |
84 |
71 83
|
ffvelrnd |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G ` ( N + 1 ) ) e. A ) |
85 |
78 84
|
eqeltrrd |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> B e. A ) |
86 |
|
ffn |
|- ( G : ( 1 ... ( N + 1 ) ) --> A -> G Fn ( 1 ... ( N + 1 ) ) ) |
87 |
71 86
|
syl |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> G Fn ( 1 ... ( N + 1 ) ) ) |
88 |
|
fnressn |
|- ( ( G Fn ( 1 ... ( N + 1 ) ) /\ ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( G |` { ( N + 1 ) } ) = { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } ) |
89 |
87 83 88
|
syl2anc |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` { ( N + 1 ) } ) = { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } ) |
90 |
|
opeq2 |
|- ( ( G ` ( N + 1 ) ) = B -> <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. = <. ( N + 1 ) , B >. ) |
91 |
90
|
sneqd |
|- ( ( G ` ( N + 1 ) ) = B -> { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } = { <. ( N + 1 ) , B >. } ) |
92 |
78 91
|
syl |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } = { <. ( N + 1 ) , B >. } ) |
93 |
89 92
|
eqtrd |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` { ( N + 1 ) } ) = { <. ( N + 1 ) , B >. } ) |
94 |
1 93
|
eqtr4id |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> H = ( G |` { ( N + 1 ) } ) ) |
95 |
75 94
|
uneq12d |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( F u. H ) = ( ( G |` ( 1 ... N ) ) u. ( G |` { ( N + 1 ) } ) ) ) |
96 |
|
simpl |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> N e. NN0 ) |
97 |
96 19
|
eleqtrdi |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> N e. ( ZZ>= ` ( 1 - 1 ) ) ) |
98 |
14 97 21
|
sylancr |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( 1 ... ( N + 1 ) ) = ( ( 1 ... N ) u. { ( N + 1 ) } ) ) |
99 |
98
|
reseq2d |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` ( 1 ... ( N + 1 ) ) ) = ( G |` ( ( 1 ... N ) u. { ( N + 1 ) } ) ) ) |
100 |
|
resundi |
|- ( G |` ( ( 1 ... N ) u. { ( N + 1 ) } ) ) = ( ( G |` ( 1 ... N ) ) u. ( G |` { ( N + 1 ) } ) ) |
101 |
99 100
|
eqtr2di |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( ( G |` ( 1 ... N ) ) u. ( G |` { ( N + 1 ) } ) ) = ( G |` ( 1 ... ( N + 1 ) ) ) ) |
102 |
|
fnresdm |
|- ( G Fn ( 1 ... ( N + 1 ) ) -> ( G |` ( 1 ... ( N + 1 ) ) ) = G ) |
103 |
71 86 102
|
3syl |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` ( 1 ... ( N + 1 ) ) ) = G ) |
104 |
95 101 103
|
3eqtrrd |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> G = ( F u. H ) ) |
105 |
77 85 104
|
3jca |
|- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) |
106 |
70 105
|
impbida |
|- ( N e. NN0 -> ( ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) <-> ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) ) |