Step |
Hyp |
Ref |
Expression |
1 |
|
fseqenlem.a |
|- ( ph -> A e. V ) |
2 |
|
fseqenlem.b |
|- ( ph -> B e. A ) |
3 |
|
fseqenlem.f |
|- ( ph -> F : ( A X. A ) -1-1-onto-> A ) |
4 |
|
fseqenlem.g |
|- G = seqom ( ( n e. _V , f e. _V |-> ( x e. ( A ^m suc n ) |-> ( ( f ` ( x |` n ) ) F ( x ` n ) ) ) ) , { <. (/) , B >. } ) |
5 |
|
fseqenlem.k |
|- K = ( y e. U_ k e. _om ( A ^m k ) |-> <. dom y , ( ( G ` dom y ) ` y ) >. ) |
6 |
|
eliun |
|- ( y e. U_ k e. _om ( A ^m k ) <-> E. k e. _om y e. ( A ^m k ) ) |
7 |
|
elmapi |
|- ( y e. ( A ^m k ) -> y : k --> A ) |
8 |
7
|
ad2antll |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> y : k --> A ) |
9 |
8
|
fdmd |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> dom y = k ) |
10 |
|
simprl |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> k e. _om ) |
11 |
9 10
|
eqeltrd |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> dom y e. _om ) |
12 |
9
|
fveq2d |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( G ` dom y ) = ( G ` k ) ) |
13 |
12
|
fveq1d |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( ( G ` dom y ) ` y ) = ( ( G ` k ) ` y ) ) |
14 |
1 2 3 4
|
fseqenlem1 |
|- ( ( ph /\ k e. _om ) -> ( G ` k ) : ( A ^m k ) -1-1-> A ) |
15 |
14
|
adantrr |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( G ` k ) : ( A ^m k ) -1-1-> A ) |
16 |
|
f1f |
|- ( ( G ` k ) : ( A ^m k ) -1-1-> A -> ( G ` k ) : ( A ^m k ) --> A ) |
17 |
15 16
|
syl |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( G ` k ) : ( A ^m k ) --> A ) |
18 |
|
simprr |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> y e. ( A ^m k ) ) |
19 |
17 18
|
ffvelrnd |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( ( G ` k ) ` y ) e. A ) |
20 |
13 19
|
eqeltrd |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> ( ( G ` dom y ) ` y ) e. A ) |
21 |
11 20
|
opelxpd |
|- ( ( ph /\ ( k e. _om /\ y e. ( A ^m k ) ) ) -> <. dom y , ( ( G ` dom y ) ` y ) >. e. ( _om X. A ) ) |
22 |
21
|
rexlimdvaa |
|- ( ph -> ( E. k e. _om y e. ( A ^m k ) -> <. dom y , ( ( G ` dom y ) ` y ) >. e. ( _om X. A ) ) ) |
23 |
6 22
|
syl5bi |
|- ( ph -> ( y e. U_ k e. _om ( A ^m k ) -> <. dom y , ( ( G ` dom y ) ` y ) >. e. ( _om X. A ) ) ) |
24 |
23
|
imp |
|- ( ( ph /\ y e. U_ k e. _om ( A ^m k ) ) -> <. dom y , ( ( G ` dom y ) ` y ) >. e. ( _om X. A ) ) |
25 |
24 5
|
fmptd |
|- ( ph -> K : U_ k e. _om ( A ^m k ) --> ( _om X. A ) ) |
26 |
|
ffun |
|- ( K : U_ k e. _om ( A ^m k ) --> ( _om X. A ) -> Fun K ) |
27 |
|
funbrfv2b |
|- ( Fun K -> ( z K w <-> ( z e. dom K /\ ( K ` z ) = w ) ) ) |
28 |
25 26 27
|
3syl |
|- ( ph -> ( z K w <-> ( z e. dom K /\ ( K ` z ) = w ) ) ) |
29 |
28
|
simplbda |
|- ( ( ph /\ z K w ) -> ( K ` z ) = w ) |
30 |
28
|
simprbda |
|- ( ( ph /\ z K w ) -> z e. dom K ) |
31 |
25
|
fdmd |
|- ( ph -> dom K = U_ k e. _om ( A ^m k ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ z K w ) -> dom K = U_ k e. _om ( A ^m k ) ) |
33 |
30 32
|
eleqtrd |
|- ( ( ph /\ z K w ) -> z e. U_ k e. _om ( A ^m k ) ) |
34 |
|
dmeq |
|- ( y = z -> dom y = dom z ) |
35 |
34
|
fveq2d |
|- ( y = z -> ( G ` dom y ) = ( G ` dom z ) ) |
36 |
|
id |
|- ( y = z -> y = z ) |
37 |
35 36
|
fveq12d |
|- ( y = z -> ( ( G ` dom y ) ` y ) = ( ( G ` dom z ) ` z ) ) |
38 |
34 37
|
opeq12d |
|- ( y = z -> <. dom y , ( ( G ` dom y ) ` y ) >. = <. dom z , ( ( G ` dom z ) ` z ) >. ) |
39 |
|
opex |
|- <. dom z , ( ( G ` dom z ) ` z ) >. e. _V |
40 |
38 5 39
|
fvmpt |
|- ( z e. U_ k e. _om ( A ^m k ) -> ( K ` z ) = <. dom z , ( ( G ` dom z ) ` z ) >. ) |
41 |
33 40
|
syl |
|- ( ( ph /\ z K w ) -> ( K ` z ) = <. dom z , ( ( G ` dom z ) ` z ) >. ) |
42 |
29 41
|
eqtr3d |
|- ( ( ph /\ z K w ) -> w = <. dom z , ( ( G ` dom z ) ` z ) >. ) |
43 |
42
|
fveq2d |
|- ( ( ph /\ z K w ) -> ( 1st ` w ) = ( 1st ` <. dom z , ( ( G ` dom z ) ` z ) >. ) ) |
44 |
|
vex |
|- z e. _V |
45 |
44
|
dmex |
|- dom z e. _V |
46 |
|
fvex |
|- ( ( G ` dom z ) ` z ) e. _V |
47 |
45 46
|
op1st |
|- ( 1st ` <. dom z , ( ( G ` dom z ) ` z ) >. ) = dom z |
48 |
43 47
|
eqtrdi |
|- ( ( ph /\ z K w ) -> ( 1st ` w ) = dom z ) |
49 |
48
|
fveq2d |
|- ( ( ph /\ z K w ) -> ( G ` ( 1st ` w ) ) = ( G ` dom z ) ) |
50 |
49
|
cnveqd |
|- ( ( ph /\ z K w ) -> `' ( G ` ( 1st ` w ) ) = `' ( G ` dom z ) ) |
51 |
42
|
fveq2d |
|- ( ( ph /\ z K w ) -> ( 2nd ` w ) = ( 2nd ` <. dom z , ( ( G ` dom z ) ` z ) >. ) ) |
52 |
45 46
|
op2nd |
|- ( 2nd ` <. dom z , ( ( G ` dom z ) ` z ) >. ) = ( ( G ` dom z ) ` z ) |
53 |
51 52
|
eqtrdi |
|- ( ( ph /\ z K w ) -> ( 2nd ` w ) = ( ( G ` dom z ) ` z ) ) |
54 |
50 53
|
fveq12d |
|- ( ( ph /\ z K w ) -> ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) = ( `' ( G ` dom z ) ` ( ( G ` dom z ) ` z ) ) ) |
55 |
|
eliun |
|- ( z e. U_ k e. _om ( A ^m k ) <-> E. k e. _om z e. ( A ^m k ) ) |
56 |
|
elmapi |
|- ( z e. ( A ^m k ) -> z : k --> A ) |
57 |
56
|
adantl |
|- ( ( k e. _om /\ z e. ( A ^m k ) ) -> z : k --> A ) |
58 |
57
|
fdmd |
|- ( ( k e. _om /\ z e. ( A ^m k ) ) -> dom z = k ) |
59 |
|
simpl |
|- ( ( k e. _om /\ z e. ( A ^m k ) ) -> k e. _om ) |
60 |
58 59
|
eqeltrd |
|- ( ( k e. _om /\ z e. ( A ^m k ) ) -> dom z e. _om ) |
61 |
|
simpr |
|- ( ( k e. _om /\ z e. ( A ^m k ) ) -> z e. ( A ^m k ) ) |
62 |
58
|
oveq2d |
|- ( ( k e. _om /\ z e. ( A ^m k ) ) -> ( A ^m dom z ) = ( A ^m k ) ) |
63 |
61 62
|
eleqtrrd |
|- ( ( k e. _om /\ z e. ( A ^m k ) ) -> z e. ( A ^m dom z ) ) |
64 |
60 63
|
jca |
|- ( ( k e. _om /\ z e. ( A ^m k ) ) -> ( dom z e. _om /\ z e. ( A ^m dom z ) ) ) |
65 |
64
|
rexlimiva |
|- ( E. k e. _om z e. ( A ^m k ) -> ( dom z e. _om /\ z e. ( A ^m dom z ) ) ) |
66 |
55 65
|
sylbi |
|- ( z e. U_ k e. _om ( A ^m k ) -> ( dom z e. _om /\ z e. ( A ^m dom z ) ) ) |
67 |
33 66
|
syl |
|- ( ( ph /\ z K w ) -> ( dom z e. _om /\ z e. ( A ^m dom z ) ) ) |
68 |
67
|
simpld |
|- ( ( ph /\ z K w ) -> dom z e. _om ) |
69 |
1 2 3 4
|
fseqenlem1 |
|- ( ( ph /\ dom z e. _om ) -> ( G ` dom z ) : ( A ^m dom z ) -1-1-> A ) |
70 |
68 69
|
syldan |
|- ( ( ph /\ z K w ) -> ( G ` dom z ) : ( A ^m dom z ) -1-1-> A ) |
71 |
|
f1f1orn |
|- ( ( G ` dom z ) : ( A ^m dom z ) -1-1-> A -> ( G ` dom z ) : ( A ^m dom z ) -1-1-onto-> ran ( G ` dom z ) ) |
72 |
70 71
|
syl |
|- ( ( ph /\ z K w ) -> ( G ` dom z ) : ( A ^m dom z ) -1-1-onto-> ran ( G ` dom z ) ) |
73 |
67
|
simprd |
|- ( ( ph /\ z K w ) -> z e. ( A ^m dom z ) ) |
74 |
|
f1ocnvfv1 |
|- ( ( ( G ` dom z ) : ( A ^m dom z ) -1-1-onto-> ran ( G ` dom z ) /\ z e. ( A ^m dom z ) ) -> ( `' ( G ` dom z ) ` ( ( G ` dom z ) ` z ) ) = z ) |
75 |
72 73 74
|
syl2anc |
|- ( ( ph /\ z K w ) -> ( `' ( G ` dom z ) ` ( ( G ` dom z ) ` z ) ) = z ) |
76 |
54 75
|
eqtr2d |
|- ( ( ph /\ z K w ) -> z = ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) ) |
77 |
76
|
ex |
|- ( ph -> ( z K w -> z = ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) ) ) |
78 |
77
|
alrimiv |
|- ( ph -> A. z ( z K w -> z = ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) ) ) |
79 |
|
mo2icl |
|- ( A. z ( z K w -> z = ( `' ( G ` ( 1st ` w ) ) ` ( 2nd ` w ) ) ) -> E* z z K w ) |
80 |
78 79
|
syl |
|- ( ph -> E* z z K w ) |
81 |
80
|
alrimiv |
|- ( ph -> A. w E* z z K w ) |
82 |
|
dff12 |
|- ( K : U_ k e. _om ( A ^m k ) -1-1-> ( _om X. A ) <-> ( K : U_ k e. _om ( A ^m k ) --> ( _om X. A ) /\ A. w E* z z K w ) ) |
83 |
25 81 82
|
sylanbrc |
|- ( ph -> K : U_ k e. _om ( A ^m k ) -1-1-> ( _om X. A ) ) |