| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frn |  |-  ( F : ( M ... N ) --> RR -> ran F C_ RR ) | 
						
							| 2 | 1 | adantl |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ran F C_ RR ) | 
						
							| 3 |  | fzfi |  |-  ( M ... N ) e. Fin | 
						
							| 4 |  | ffn |  |-  ( F : ( M ... N ) --> RR -> F Fn ( M ... N ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> F Fn ( M ... N ) ) | 
						
							| 6 |  | dffn4 |  |-  ( F Fn ( M ... N ) <-> F : ( M ... N ) -onto-> ran F ) | 
						
							| 7 | 5 6 | sylib |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> F : ( M ... N ) -onto-> ran F ) | 
						
							| 8 |  | fofi |  |-  ( ( ( M ... N ) e. Fin /\ F : ( M ... N ) -onto-> ran F ) -> ran F e. Fin ) | 
						
							| 9 | 3 7 8 | sylancr |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ran F e. Fin ) | 
						
							| 10 |  | fdm |  |-  ( F : ( M ... N ) --> RR -> dom F = ( M ... N ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> dom F = ( M ... N ) ) | 
						
							| 12 |  | simpl |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 13 |  | fzn0 |  |-  ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ( M ... N ) =/= (/) ) | 
						
							| 15 | 11 14 | eqnetrd |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> dom F =/= (/) ) | 
						
							| 16 |  | dm0rn0 |  |-  ( dom F = (/) <-> ran F = (/) ) | 
						
							| 17 | 16 | necon3bii |  |-  ( dom F =/= (/) <-> ran F =/= (/) ) | 
						
							| 18 | 15 17 | sylib |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> ran F =/= (/) ) | 
						
							| 19 |  | ltso |  |-  < Or RR | 
						
							| 20 |  | fisupcl |  |-  ( ( < Or RR /\ ( ran F e. Fin /\ ran F =/= (/) /\ ran F C_ RR ) ) -> sup ( ran F , RR , < ) e. ran F ) | 
						
							| 21 | 19 20 | mpan |  |-  ( ( ran F e. Fin /\ ran F =/= (/) /\ ran F C_ RR ) -> sup ( ran F , RR , < ) e. ran F ) | 
						
							| 22 | 9 18 2 21 | syl3anc |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> sup ( ran F , RR , < ) e. ran F ) | 
						
							| 23 | 2 22 | sseldd |  |-  ( ( N e. ( ZZ>= ` M ) /\ F : ( M ... N ) --> RR ) -> sup ( ran F , RR , < ) e. RR ) |