| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frn |
|- ( F : ( M ... N ) --> RR -> ran F C_ RR ) |
| 2 |
1
|
adantl |
|- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ran F C_ RR ) |
| 3 |
|
fdm |
|- ( F : ( M ... N ) --> RR -> dom F = ( M ... N ) ) |
| 4 |
|
ne0i |
|- ( K e. ( M ... N ) -> ( M ... N ) =/= (/) ) |
| 5 |
|
dm0rn0 |
|- ( dom F = (/) <-> ran F = (/) ) |
| 6 |
|
eqeq1 |
|- ( dom F = ( M ... N ) -> ( dom F = (/) <-> ( M ... N ) = (/) ) ) |
| 7 |
6
|
biimpd |
|- ( dom F = ( M ... N ) -> ( dom F = (/) -> ( M ... N ) = (/) ) ) |
| 8 |
5 7
|
biimtrrid |
|- ( dom F = ( M ... N ) -> ( ran F = (/) -> ( M ... N ) = (/) ) ) |
| 9 |
8
|
necon3d |
|- ( dom F = ( M ... N ) -> ( ( M ... N ) =/= (/) -> ran F =/= (/) ) ) |
| 10 |
4 9
|
mpan9 |
|- ( ( K e. ( M ... N ) /\ dom F = ( M ... N ) ) -> ran F =/= (/) ) |
| 11 |
3 10
|
sylan2 |
|- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ran F =/= (/) ) |
| 12 |
|
fsequb2 |
|- ( F : ( M ... N ) --> RR -> E. x e. RR A. y e. ran F y <_ x ) |
| 13 |
12
|
adantl |
|- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> E. x e. RR A. y e. ran F y <_ x ) |
| 14 |
|
ffn |
|- ( F : ( M ... N ) --> RR -> F Fn ( M ... N ) ) |
| 15 |
|
fnfvelrn |
|- ( ( F Fn ( M ... N ) /\ K e. ( M ... N ) ) -> ( F ` K ) e. ran F ) |
| 16 |
15
|
ancoms |
|- ( ( K e. ( M ... N ) /\ F Fn ( M ... N ) ) -> ( F ` K ) e. ran F ) |
| 17 |
14 16
|
sylan2 |
|- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ( F ` K ) e. ran F ) |
| 18 |
2 11 13 17
|
suprubd |
|- ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ( F ` K ) <_ sup ( ran F , RR , < ) ) |