| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frn |  |-  ( F : ( M ... N ) --> RR -> ran F C_ RR ) | 
						
							| 2 | 1 | adantl |  |-  ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ran F C_ RR ) | 
						
							| 3 |  | fdm |  |-  ( F : ( M ... N ) --> RR -> dom F = ( M ... N ) ) | 
						
							| 4 |  | ne0i |  |-  ( K e. ( M ... N ) -> ( M ... N ) =/= (/) ) | 
						
							| 5 |  | dm0rn0 |  |-  ( dom F = (/) <-> ran F = (/) ) | 
						
							| 6 |  | eqeq1 |  |-  ( dom F = ( M ... N ) -> ( dom F = (/) <-> ( M ... N ) = (/) ) ) | 
						
							| 7 | 6 | biimpd |  |-  ( dom F = ( M ... N ) -> ( dom F = (/) -> ( M ... N ) = (/) ) ) | 
						
							| 8 | 5 7 | biimtrrid |  |-  ( dom F = ( M ... N ) -> ( ran F = (/) -> ( M ... N ) = (/) ) ) | 
						
							| 9 | 8 | necon3d |  |-  ( dom F = ( M ... N ) -> ( ( M ... N ) =/= (/) -> ran F =/= (/) ) ) | 
						
							| 10 | 4 9 | mpan9 |  |-  ( ( K e. ( M ... N ) /\ dom F = ( M ... N ) ) -> ran F =/= (/) ) | 
						
							| 11 | 3 10 | sylan2 |  |-  ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ran F =/= (/) ) | 
						
							| 12 |  | fsequb2 |  |-  ( F : ( M ... N ) --> RR -> E. x e. RR A. y e. ran F y <_ x ) | 
						
							| 13 | 12 | adantl |  |-  ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> E. x e. RR A. y e. ran F y <_ x ) | 
						
							| 14 |  | ffn |  |-  ( F : ( M ... N ) --> RR -> F Fn ( M ... N ) ) | 
						
							| 15 |  | fnfvelrn |  |-  ( ( F Fn ( M ... N ) /\ K e. ( M ... N ) ) -> ( F ` K ) e. ran F ) | 
						
							| 16 | 15 | ancoms |  |-  ( ( K e. ( M ... N ) /\ F Fn ( M ... N ) ) -> ( F ` K ) e. ran F ) | 
						
							| 17 | 14 16 | sylan2 |  |-  ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ( F ` K ) e. ran F ) | 
						
							| 18 | 2 11 13 17 | suprubd |  |-  ( ( K e. ( M ... N ) /\ F : ( M ... N ) --> RR ) -> ( F ` K ) <_ sup ( ran F , RR , < ) ) |