Metamath Proof Explorer


Theorem fsetsspwxp

Description: The class of all functions from A into B is a subclass of the power class of the cartesion product of A and B . (Contributed by AV, 13-Sep-2024)

Ref Expression
Assertion fsetsspwxp
|- { f | f : A --> B } C_ ~P ( A X. B )

Proof

Step Hyp Ref Expression
1 fssxp
 |-  ( g : A --> B -> g C_ ( A X. B ) )
2 vex
 |-  g e. _V
3 feq1
 |-  ( f = g -> ( f : A --> B <-> g : A --> B ) )
4 2 3 elab
 |-  ( g e. { f | f : A --> B } <-> g : A --> B )
5 velpw
 |-  ( g e. ~P ( A X. B ) <-> g C_ ( A X. B ) )
6 1 4 5 3imtr4i
 |-  ( g e. { f | f : A --> B } -> g e. ~P ( A X. B ) )
7 6 ssriv
 |-  { f | f : A --> B } C_ ~P ( A X. B )