Step |
Hyp |
Ref |
Expression |
1 |
|
fsn2.1 |
|- A e. _V |
2 |
1
|
snid |
|- A e. { A } |
3 |
|
ffvelrn |
|- ( ( F : { A } --> B /\ A e. { A } ) -> ( F ` A ) e. B ) |
4 |
2 3
|
mpan2 |
|- ( F : { A } --> B -> ( F ` A ) e. B ) |
5 |
|
ffn |
|- ( F : { A } --> B -> F Fn { A } ) |
6 |
|
dffn3 |
|- ( F Fn { A } <-> F : { A } --> ran F ) |
7 |
6
|
biimpi |
|- ( F Fn { A } -> F : { A } --> ran F ) |
8 |
|
imadmrn |
|- ( F " dom F ) = ran F |
9 |
|
fndm |
|- ( F Fn { A } -> dom F = { A } ) |
10 |
9
|
imaeq2d |
|- ( F Fn { A } -> ( F " dom F ) = ( F " { A } ) ) |
11 |
8 10
|
eqtr3id |
|- ( F Fn { A } -> ran F = ( F " { A } ) ) |
12 |
|
fnsnfv |
|- ( ( F Fn { A } /\ A e. { A } ) -> { ( F ` A ) } = ( F " { A } ) ) |
13 |
2 12
|
mpan2 |
|- ( F Fn { A } -> { ( F ` A ) } = ( F " { A } ) ) |
14 |
11 13
|
eqtr4d |
|- ( F Fn { A } -> ran F = { ( F ` A ) } ) |
15 |
14
|
feq3d |
|- ( F Fn { A } -> ( F : { A } --> ran F <-> F : { A } --> { ( F ` A ) } ) ) |
16 |
7 15
|
mpbid |
|- ( F Fn { A } -> F : { A } --> { ( F ` A ) } ) |
17 |
5 16
|
syl |
|- ( F : { A } --> B -> F : { A } --> { ( F ` A ) } ) |
18 |
4 17
|
jca |
|- ( F : { A } --> B -> ( ( F ` A ) e. B /\ F : { A } --> { ( F ` A ) } ) ) |
19 |
|
snssi |
|- ( ( F ` A ) e. B -> { ( F ` A ) } C_ B ) |
20 |
|
fss |
|- ( ( F : { A } --> { ( F ` A ) } /\ { ( F ` A ) } C_ B ) -> F : { A } --> B ) |
21 |
20
|
ancoms |
|- ( ( { ( F ` A ) } C_ B /\ F : { A } --> { ( F ` A ) } ) -> F : { A } --> B ) |
22 |
19 21
|
sylan |
|- ( ( ( F ` A ) e. B /\ F : { A } --> { ( F ` A ) } ) -> F : { A } --> B ) |
23 |
18 22
|
impbii |
|- ( F : { A } --> B <-> ( ( F ` A ) e. B /\ F : { A } --> { ( F ` A ) } ) ) |
24 |
|
fvex |
|- ( F ` A ) e. _V |
25 |
1 24
|
fsn |
|- ( F : { A } --> { ( F ` A ) } <-> F = { <. A , ( F ` A ) >. } ) |
26 |
25
|
anbi2i |
|- ( ( ( F ` A ) e. B /\ F : { A } --> { ( F ` A ) } ) <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) |
27 |
23 26
|
bitri |
|- ( F : { A } --> B <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) |