Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|- ( a = A -> { a } = { A } ) |
2 |
1
|
feq2d |
|- ( a = A -> ( F : { a } --> B <-> F : { A } --> B ) ) |
3 |
|
fveq2 |
|- ( a = A -> ( F ` a ) = ( F ` A ) ) |
4 |
3
|
eleq1d |
|- ( a = A -> ( ( F ` a ) e. B <-> ( F ` A ) e. B ) ) |
5 |
|
id |
|- ( a = A -> a = A ) |
6 |
5 3
|
opeq12d |
|- ( a = A -> <. a , ( F ` a ) >. = <. A , ( F ` A ) >. ) |
7 |
6
|
sneqd |
|- ( a = A -> { <. a , ( F ` a ) >. } = { <. A , ( F ` A ) >. } ) |
8 |
7
|
eqeq2d |
|- ( a = A -> ( F = { <. a , ( F ` a ) >. } <-> F = { <. A , ( F ` A ) >. } ) ) |
9 |
4 8
|
anbi12d |
|- ( a = A -> ( ( ( F ` a ) e. B /\ F = { <. a , ( F ` a ) >. } ) <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) ) |
10 |
|
vex |
|- a e. _V |
11 |
10
|
fsn2 |
|- ( F : { a } --> B <-> ( ( F ` a ) e. B /\ F = { <. a , ( F ` a ) >. } ) ) |
12 |
2 9 11
|
vtoclbg |
|- ( A e. V -> ( F : { A } --> B <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) ) |