Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsnd.a | |- ( ph -> A e. V ) |
|
fsnd.b | |- ( ph -> B e. W ) |
||
Assertion | fsnd | |- ( ph -> { <. A , B >. } : { A } --> W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsnd.a | |- ( ph -> A e. V ) |
|
2 | fsnd.b | |- ( ph -> B e. W ) |
|
3 | 1 2 | jca | |- ( ph -> ( A e. V /\ B e. W ) ) |
4 | f1sng | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } : { A } -1-1-> W ) |
|
5 | f1f | |- ( { <. A , B >. } : { A } -1-1-> W -> { <. A , B >. } : { A } --> W ) |
|
6 | 3 4 5 | 3syl | |- ( ph -> { <. A , B >. } : { A } --> W ) |