Metamath Proof Explorer


Theorem fsnd

Description: A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021)

Ref Expression
Hypotheses fsnd.a
|- ( ph -> A e. V )
fsnd.b
|- ( ph -> B e. W )
Assertion fsnd
|- ( ph -> { <. A , B >. } : { A } --> W )

Proof

Step Hyp Ref Expression
1 fsnd.a
 |-  ( ph -> A e. V )
2 fsnd.b
 |-  ( ph -> B e. W )
3 1 2 jca
 |-  ( ph -> ( A e. V /\ B e. W ) )
4 f1sng
 |-  ( ( A e. V /\ B e. W ) -> { <. A , B >. } : { A } -1-1-> W )
5 f1f
 |-  ( { <. A , B >. } : { A } -1-1-> W -> { <. A , B >. } : { A } --> W )
6 3 4 5 3syl
 |-  ( ph -> { <. A , B >. } : { A } --> W )