| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fsneqrn.a | 
							 |-  ( ph -> A e. V )  | 
						
						
							| 2 | 
							
								
							 | 
							fsneqrn.b | 
							 |-  B = { A } | 
						
						
							| 3 | 
							
								
							 | 
							fsneqrn.f | 
							 |-  ( ph -> F Fn B )  | 
						
						
							| 4 | 
							
								
							 | 
							fsneqrn.g | 
							 |-  ( ph -> G Fn B )  | 
						
						
							| 5 | 
							
								
							 | 
							dffn3 | 
							 |-  ( F Fn B <-> F : B --> ran F )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							sylib | 
							 |-  ( ph -> F : B --> ran F )  | 
						
						
							| 7 | 
							
								
							 | 
							snidg | 
							 |-  ( A e. V -> A e. { A } ) | 
						
						
							| 8 | 
							
								1 7
							 | 
							syl | 
							 |-  ( ph -> A e. { A } ) | 
						
						
							| 9 | 
							
								2
							 | 
							a1i | 
							 |-  ( ph -> B = { A } ) | 
						
						
							| 10 | 
							
								9
							 | 
							eqcomd | 
							 |-  ( ph -> { A } = B ) | 
						
						
							| 11 | 
							
								8 10
							 | 
							eleqtrd | 
							 |-  ( ph -> A e. B )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( F ` A ) e. ran F )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ph /\ F = G ) -> ( F ` A ) e. ran F )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ F = G ) -> F = G )  | 
						
						
							| 15 | 
							
								14
							 | 
							rneqd | 
							 |-  ( ( ph /\ F = G ) -> ran F = ran G )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ F = G ) -> ( F ` A ) e. ran G )  | 
						
						
							| 17 | 
							
								16
							 | 
							ex | 
							 |-  ( ph -> ( F = G -> ( F ` A ) e. ran G ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ ( F ` A ) e. ran G ) -> ( F ` A ) e. ran G )  | 
						
						
							| 19 | 
							
								
							 | 
							dffn2 | 
							 |-  ( G Fn B <-> G : B --> _V )  | 
						
						
							| 20 | 
							
								4 19
							 | 
							sylib | 
							 |-  ( ph -> G : B --> _V )  | 
						
						
							| 21 | 
							
								9
							 | 
							feq2d | 
							 |-  ( ph -> ( G : B --> _V <-> G : { A } --> _V ) ) | 
						
						
							| 22 | 
							
								20 21
							 | 
							mpbid | 
							 |-  ( ph -> G : { A } --> _V ) | 
						
						
							| 23 | 
							
								1 22
							 | 
							rnsnf | 
							 |-  ( ph -> ran G = { ( G ` A ) } ) | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ph /\ ( F ` A ) e. ran G ) -> ran G = { ( G ` A ) } ) | 
						
						
							| 25 | 
							
								18 24
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ ( F ` A ) e. ran G ) -> ( F ` A ) e. { ( G ` A ) } ) | 
						
						
							| 26 | 
							
								
							 | 
							elsni | 
							 |-  ( ( F ` A ) e. { ( G ` A ) } -> ( F ` A ) = ( G ` A ) ) | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							 |-  ( ( ph /\ ( F ` A ) e. ran G ) -> ( F ` A ) = ( G ` A ) )  | 
						
						
							| 28 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ ( F ` A ) e. ran G ) -> A e. V )  | 
						
						
							| 29 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ ( F ` A ) e. ran G ) -> F Fn B )  | 
						
						
							| 30 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ ( F ` A ) e. ran G ) -> G Fn B )  | 
						
						
							| 31 | 
							
								28 2 29 30
							 | 
							fsneq | 
							 |-  ( ( ph /\ ( F ` A ) e. ran G ) -> ( F = G <-> ( F ` A ) = ( G ` A ) ) )  | 
						
						
							| 32 | 
							
								27 31
							 | 
							mpbird | 
							 |-  ( ( ph /\ ( F ` A ) e. ran G ) -> F = G )  | 
						
						
							| 33 | 
							
								32
							 | 
							ex | 
							 |-  ( ph -> ( ( F ` A ) e. ran G -> F = G ) )  | 
						
						
							| 34 | 
							
								17 33
							 | 
							impbid | 
							 |-  ( ph -> ( F = G <-> ( F ` A ) e. ran G ) )  |