Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|- ( a = A -> { a } = { A } ) |
2 |
1
|
feq2d |
|- ( a = A -> ( F : { a } --> { b } <-> F : { A } --> { b } ) ) |
3 |
|
opeq1 |
|- ( a = A -> <. a , b >. = <. A , b >. ) |
4 |
3
|
sneqd |
|- ( a = A -> { <. a , b >. } = { <. A , b >. } ) |
5 |
4
|
eqeq2d |
|- ( a = A -> ( F = { <. a , b >. } <-> F = { <. A , b >. } ) ) |
6 |
2 5
|
bibi12d |
|- ( a = A -> ( ( F : { a } --> { b } <-> F = { <. a , b >. } ) <-> ( F : { A } --> { b } <-> F = { <. A , b >. } ) ) ) |
7 |
|
sneq |
|- ( b = B -> { b } = { B } ) |
8 |
7
|
feq3d |
|- ( b = B -> ( F : { A } --> { b } <-> F : { A } --> { B } ) ) |
9 |
|
opeq2 |
|- ( b = B -> <. A , b >. = <. A , B >. ) |
10 |
9
|
sneqd |
|- ( b = B -> { <. A , b >. } = { <. A , B >. } ) |
11 |
10
|
eqeq2d |
|- ( b = B -> ( F = { <. A , b >. } <-> F = { <. A , B >. } ) ) |
12 |
8 11
|
bibi12d |
|- ( b = B -> ( ( F : { A } --> { b } <-> F = { <. A , b >. } ) <-> ( F : { A } --> { B } <-> F = { <. A , B >. } ) ) ) |
13 |
|
vex |
|- a e. _V |
14 |
|
vex |
|- b e. _V |
15 |
13 14
|
fsn |
|- ( F : { a } --> { b } <-> F = { <. a , b >. } ) |
16 |
6 12 15
|
vtocl2g |
|- ( ( A e. C /\ B e. D ) -> ( F : { A } --> { B } <-> F = { <. A , B >. } ) ) |