| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sneq |
|- ( a = A -> { a } = { A } ) |
| 2 |
1
|
feq2d |
|- ( a = A -> ( F : { a } --> { b } <-> F : { A } --> { b } ) ) |
| 3 |
|
opeq1 |
|- ( a = A -> <. a , b >. = <. A , b >. ) |
| 4 |
3
|
sneqd |
|- ( a = A -> { <. a , b >. } = { <. A , b >. } ) |
| 5 |
4
|
eqeq2d |
|- ( a = A -> ( F = { <. a , b >. } <-> F = { <. A , b >. } ) ) |
| 6 |
2 5
|
bibi12d |
|- ( a = A -> ( ( F : { a } --> { b } <-> F = { <. a , b >. } ) <-> ( F : { A } --> { b } <-> F = { <. A , b >. } ) ) ) |
| 7 |
|
sneq |
|- ( b = B -> { b } = { B } ) |
| 8 |
7
|
feq3d |
|- ( b = B -> ( F : { A } --> { b } <-> F : { A } --> { B } ) ) |
| 9 |
|
opeq2 |
|- ( b = B -> <. A , b >. = <. A , B >. ) |
| 10 |
9
|
sneqd |
|- ( b = B -> { <. A , b >. } = { <. A , B >. } ) |
| 11 |
10
|
eqeq2d |
|- ( b = B -> ( F = { <. A , b >. } <-> F = { <. A , B >. } ) ) |
| 12 |
8 11
|
bibi12d |
|- ( b = B -> ( ( F : { A } --> { b } <-> F = { <. A , b >. } ) <-> ( F : { A } --> { B } <-> F = { <. A , B >. } ) ) ) |
| 13 |
|
vex |
|- a e. _V |
| 14 |
|
vex |
|- b e. _V |
| 15 |
13 14
|
fsn |
|- ( F : { a } --> { b } <-> F = { <. a , b >. } ) |
| 16 |
6 12 15
|
vtocl2g |
|- ( ( A e. C /\ B e. D ) -> ( F : { A } --> { B } <-> F = { <. A , B >. } ) ) |