Step |
Hyp |
Ref |
Expression |
1 |
|
dmres |
|- dom ( F |` { X } ) = ( { X } i^i dom F ) |
2 |
|
incom |
|- ( { X } i^i dom F ) = ( dom F i^i { X } ) |
3 |
1 2
|
eqtri |
|- dom ( F |` { X } ) = ( dom F i^i { X } ) |
4 |
|
disjsn |
|- ( ( dom F i^i { X } ) = (/) <-> -. X e. dom F ) |
5 |
4
|
biimpri |
|- ( -. X e. dom F -> ( dom F i^i { X } ) = (/) ) |
6 |
3 5
|
eqtrid |
|- ( -. X e. dom F -> dom ( F |` { X } ) = (/) ) |
7 |
6
|
3ad2ant3 |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> dom ( F |` { X } ) = (/) ) |
8 |
|
relres |
|- Rel ( F |` { X } ) |
9 |
|
reldm0 |
|- ( Rel ( F |` { X } ) -> ( ( F |` { X } ) = (/) <-> dom ( F |` { X } ) = (/) ) ) |
10 |
8 9
|
ax-mp |
|- ( ( F |` { X } ) = (/) <-> dom ( F |` { X } ) = (/) ) |
11 |
7 10
|
sylibr |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> ( F |` { X } ) = (/) ) |
12 |
|
fnsng |
|- ( ( X e. V /\ Y e. W ) -> { <. X , Y >. } Fn { X } ) |
13 |
12
|
3adant3 |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> { <. X , Y >. } Fn { X } ) |
14 |
|
fnresdm |
|- ( { <. X , Y >. } Fn { X } -> ( { <. X , Y >. } |` { X } ) = { <. X , Y >. } ) |
15 |
13 14
|
syl |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> ( { <. X , Y >. } |` { X } ) = { <. X , Y >. } ) |
16 |
11 15
|
uneq12d |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> ( ( F |` { X } ) u. ( { <. X , Y >. } |` { X } ) ) = ( (/) u. { <. X , Y >. } ) ) |
17 |
|
resundir |
|- ( ( F u. { <. X , Y >. } ) |` { X } ) = ( ( F |` { X } ) u. ( { <. X , Y >. } |` { X } ) ) |
18 |
|
uncom |
|- ( (/) u. { <. X , Y >. } ) = ( { <. X , Y >. } u. (/) ) |
19 |
|
un0 |
|- ( { <. X , Y >. } u. (/) ) = { <. X , Y >. } |
20 |
18 19
|
eqtr2i |
|- { <. X , Y >. } = ( (/) u. { <. X , Y >. } ) |
21 |
16 17 20
|
3eqtr4g |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> ( ( F u. { <. X , Y >. } ) |` { X } ) = { <. X , Y >. } ) |
22 |
21
|
fveq1d |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> ( ( ( F u. { <. X , Y >. } ) |` { X } ) ` X ) = ( { <. X , Y >. } ` X ) ) |
23 |
|
snidg |
|- ( X e. V -> X e. { X } ) |
24 |
23
|
3ad2ant1 |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> X e. { X } ) |
25 |
24
|
fvresd |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> ( ( ( F u. { <. X , Y >. } ) |` { X } ) ` X ) = ( ( F u. { <. X , Y >. } ) ` X ) ) |
26 |
|
fvsng |
|- ( ( X e. V /\ Y e. W ) -> ( { <. X , Y >. } ` X ) = Y ) |
27 |
26
|
3adant3 |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> ( { <. X , Y >. } ` X ) = Y ) |
28 |
22 25 27
|
3eqtr3d |
|- ( ( X e. V /\ Y e. W /\ -. X e. dom F ) -> ( ( F u. { <. X , Y >. } ) ` X ) = Y ) |