| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnresdm |  |-  ( F Fn S -> ( F |` S ) = F ) | 
						
							| 2 | 1 | adantr |  |-  ( ( F Fn S /\ -. X e. S ) -> ( F |` S ) = F ) | 
						
							| 3 |  | ressnop0 |  |-  ( -. X e. S -> ( { <. X , Y >. } |` S ) = (/) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( F Fn S /\ -. X e. S ) -> ( { <. X , Y >. } |` S ) = (/) ) | 
						
							| 5 | 2 4 | uneq12d |  |-  ( ( F Fn S /\ -. X e. S ) -> ( ( F |` S ) u. ( { <. X , Y >. } |` S ) ) = ( F u. (/) ) ) | 
						
							| 6 |  | resundir |  |-  ( ( F u. { <. X , Y >. } ) |` S ) = ( ( F |` S ) u. ( { <. X , Y >. } |` S ) ) | 
						
							| 7 |  | un0 |  |-  ( F u. (/) ) = F | 
						
							| 8 | 7 | eqcomi |  |-  F = ( F u. (/) ) | 
						
							| 9 | 5 6 8 | 3eqtr4g |  |-  ( ( F Fn S /\ -. X e. S ) -> ( ( F u. { <. X , Y >. } ) |` S ) = F ) |