Step |
Hyp |
Ref |
Expression |
1 |
|
fnresdm |
|- ( F Fn S -> ( F |` S ) = F ) |
2 |
1
|
adantr |
|- ( ( F Fn S /\ -. X e. S ) -> ( F |` S ) = F ) |
3 |
|
ressnop0 |
|- ( -. X e. S -> ( { <. X , Y >. } |` S ) = (/) ) |
4 |
3
|
adantl |
|- ( ( F Fn S /\ -. X e. S ) -> ( { <. X , Y >. } |` S ) = (/) ) |
5 |
2 4
|
uneq12d |
|- ( ( F Fn S /\ -. X e. S ) -> ( ( F |` S ) u. ( { <. X , Y >. } |` S ) ) = ( F u. (/) ) ) |
6 |
|
resundir |
|- ( ( F u. { <. X , Y >. } ) |` S ) = ( ( F |` S ) u. ( { <. X , Y >. } |` S ) ) |
7 |
|
un0 |
|- ( F u. (/) ) = F |
8 |
7
|
eqcomi |
|- F = ( F u. (/) ) |
9 |
5 6 8
|
3eqtr4g |
|- ( ( F Fn S /\ -. X e. S ) -> ( ( F u. { <. X , Y >. } ) |` S ) = F ) |