| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex |  |-  x e. _V | 
						
							| 2 |  | vex |  |-  y e. _V | 
						
							| 3 | 1 2 | brcnv |  |-  ( x `' ( 1st |` _I ) y <-> y ( 1st |` _I ) x ) | 
						
							| 4 | 1 | brresi |  |-  ( y ( 1st |` _I ) x <-> ( y e. _I /\ y 1st x ) ) | 
						
							| 5 |  | 19.42v |  |-  ( E. z ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> ( ( 1st ` y ) = x /\ E. z y = <. z , z >. ) ) | 
						
							| 6 |  | vex |  |-  z e. _V | 
						
							| 7 | 6 6 | op1std |  |-  ( y = <. z , z >. -> ( 1st ` y ) = z ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( y = <. z , z >. -> ( ( 1st ` y ) = x <-> z = x ) ) | 
						
							| 9 | 8 | pm5.32ri |  |-  ( ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> ( z = x /\ y = <. z , z >. ) ) | 
						
							| 10 | 9 | exbii |  |-  ( E. z ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> E. z ( z = x /\ y = <. z , z >. ) ) | 
						
							| 11 |  | fo1st |  |-  1st : _V -onto-> _V | 
						
							| 12 |  | fofn |  |-  ( 1st : _V -onto-> _V -> 1st Fn _V ) | 
						
							| 13 | 11 12 | ax-mp |  |-  1st Fn _V | 
						
							| 14 |  | fnbrfvb |  |-  ( ( 1st Fn _V /\ y e. _V ) -> ( ( 1st ` y ) = x <-> y 1st x ) ) | 
						
							| 15 | 13 2 14 | mp2an |  |-  ( ( 1st ` y ) = x <-> y 1st x ) | 
						
							| 16 |  | df-id |  |-  _I = { <. z , t >. | z = t } | 
						
							| 17 | 16 | eleq2i |  |-  ( y e. _I <-> y e. { <. z , t >. | z = t } ) | 
						
							| 18 |  | elopab |  |-  ( y e. { <. z , t >. | z = t } <-> E. z E. t ( y = <. z , t >. /\ z = t ) ) | 
						
							| 19 |  | ancom |  |-  ( ( y = <. z , t >. /\ z = t ) <-> ( z = t /\ y = <. z , t >. ) ) | 
						
							| 20 |  | equcom |  |-  ( z = t <-> t = z ) | 
						
							| 21 | 20 | anbi1i |  |-  ( ( z = t /\ y = <. z , t >. ) <-> ( t = z /\ y = <. z , t >. ) ) | 
						
							| 22 |  | opeq2 |  |-  ( t = z -> <. z , t >. = <. z , z >. ) | 
						
							| 23 | 22 | eqeq2d |  |-  ( t = z -> ( y = <. z , t >. <-> y = <. z , z >. ) ) | 
						
							| 24 | 23 | pm5.32i |  |-  ( ( t = z /\ y = <. z , t >. ) <-> ( t = z /\ y = <. z , z >. ) ) | 
						
							| 25 | 19 21 24 | 3bitri |  |-  ( ( y = <. z , t >. /\ z = t ) <-> ( t = z /\ y = <. z , z >. ) ) | 
						
							| 26 | 25 | exbii |  |-  ( E. t ( y = <. z , t >. /\ z = t ) <-> E. t ( t = z /\ y = <. z , z >. ) ) | 
						
							| 27 |  | biidd |  |-  ( t = z -> ( y = <. z , z >. <-> y = <. z , z >. ) ) | 
						
							| 28 | 27 | equsexvw |  |-  ( E. t ( t = z /\ y = <. z , z >. ) <-> y = <. z , z >. ) | 
						
							| 29 | 26 28 | bitri |  |-  ( E. t ( y = <. z , t >. /\ z = t ) <-> y = <. z , z >. ) | 
						
							| 30 | 29 | exbii |  |-  ( E. z E. t ( y = <. z , t >. /\ z = t ) <-> E. z y = <. z , z >. ) | 
						
							| 31 | 17 18 30 | 3bitrri |  |-  ( E. z y = <. z , z >. <-> y e. _I ) | 
						
							| 32 | 15 31 | anbi12ci |  |-  ( ( ( 1st ` y ) = x /\ E. z y = <. z , z >. ) <-> ( y e. _I /\ y 1st x ) ) | 
						
							| 33 | 5 10 32 | 3bitr3ri |  |-  ( ( y e. _I /\ y 1st x ) <-> E. z ( z = x /\ y = <. z , z >. ) ) | 
						
							| 34 |  | id |  |-  ( z = x -> z = x ) | 
						
							| 35 | 34 34 | opeq12d |  |-  ( z = x -> <. z , z >. = <. x , x >. ) | 
						
							| 36 | 35 | eqeq2d |  |-  ( z = x -> ( y = <. z , z >. <-> y = <. x , x >. ) ) | 
						
							| 37 | 36 | equsexvw |  |-  ( E. z ( z = x /\ y = <. z , z >. ) <-> y = <. x , x >. ) | 
						
							| 38 | 33 37 | bitri |  |-  ( ( y e. _I /\ y 1st x ) <-> y = <. x , x >. ) | 
						
							| 39 | 3 4 38 | 3bitri |  |-  ( x `' ( 1st |` _I ) y <-> y = <. x , x >. ) | 
						
							| 40 | 39 | opabbii |  |-  { <. x , y >. | x `' ( 1st |` _I ) y } = { <. x , y >. | y = <. x , x >. } | 
						
							| 41 |  | relcnv |  |-  Rel `' ( 1st |` _I ) | 
						
							| 42 |  | dfrel4v |  |-  ( Rel `' ( 1st |` _I ) <-> `' ( 1st |` _I ) = { <. x , y >. | x `' ( 1st |` _I ) y } ) | 
						
							| 43 | 41 42 | mpbi |  |-  `' ( 1st |` _I ) = { <. x , y >. | x `' ( 1st |` _I ) y } | 
						
							| 44 |  | mptv |  |-  ( x e. _V |-> <. x , x >. ) = { <. x , y >. | y = <. x , x >. } | 
						
							| 45 | 40 43 44 | 3eqtr4i |  |-  `' ( 1st |` _I ) = ( x e. _V |-> <. x , x >. ) |