Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- x e. _V |
2 |
|
vex |
|- y e. _V |
3 |
1 2
|
brcnv |
|- ( x `' ( 1st |` _I ) y <-> y ( 1st |` _I ) x ) |
4 |
1
|
brresi |
|- ( y ( 1st |` _I ) x <-> ( y e. _I /\ y 1st x ) ) |
5 |
|
19.42v |
|- ( E. z ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> ( ( 1st ` y ) = x /\ E. z y = <. z , z >. ) ) |
6 |
|
vex |
|- z e. _V |
7 |
6 6
|
op1std |
|- ( y = <. z , z >. -> ( 1st ` y ) = z ) |
8 |
7
|
eqeq1d |
|- ( y = <. z , z >. -> ( ( 1st ` y ) = x <-> z = x ) ) |
9 |
8
|
pm5.32ri |
|- ( ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> ( z = x /\ y = <. z , z >. ) ) |
10 |
9
|
exbii |
|- ( E. z ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> E. z ( z = x /\ y = <. z , z >. ) ) |
11 |
|
fo1st |
|- 1st : _V -onto-> _V |
12 |
|
fofn |
|- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
13 |
11 12
|
ax-mp |
|- 1st Fn _V |
14 |
|
fnbrfvb |
|- ( ( 1st Fn _V /\ y e. _V ) -> ( ( 1st ` y ) = x <-> y 1st x ) ) |
15 |
13 2 14
|
mp2an |
|- ( ( 1st ` y ) = x <-> y 1st x ) |
16 |
|
dfid2 |
|- _I = { <. z , z >. | z = z } |
17 |
16
|
eleq2i |
|- ( y e. _I <-> y e. { <. z , z >. | z = z } ) |
18 |
|
nfe1 |
|- F/ z E. z ( y = <. z , z >. /\ z = z ) |
19 |
18
|
19.9 |
|- ( E. z E. z ( y = <. z , z >. /\ z = z ) <-> E. z ( y = <. z , z >. /\ z = z ) ) |
20 |
|
elopab |
|- ( y e. { <. z , z >. | z = z } <-> E. z E. z ( y = <. z , z >. /\ z = z ) ) |
21 |
|
equid |
|- z = z |
22 |
21
|
biantru |
|- ( y = <. z , z >. <-> ( y = <. z , z >. /\ z = z ) ) |
23 |
22
|
exbii |
|- ( E. z y = <. z , z >. <-> E. z ( y = <. z , z >. /\ z = z ) ) |
24 |
19 20 23
|
3bitr4i |
|- ( y e. { <. z , z >. | z = z } <-> E. z y = <. z , z >. ) |
25 |
17 24
|
bitr2i |
|- ( E. z y = <. z , z >. <-> y e. _I ) |
26 |
15 25
|
anbi12ci |
|- ( ( ( 1st ` y ) = x /\ E. z y = <. z , z >. ) <-> ( y e. _I /\ y 1st x ) ) |
27 |
5 10 26
|
3bitr3ri |
|- ( ( y e. _I /\ y 1st x ) <-> E. z ( z = x /\ y = <. z , z >. ) ) |
28 |
|
id |
|- ( z = x -> z = x ) |
29 |
28 28
|
opeq12d |
|- ( z = x -> <. z , z >. = <. x , x >. ) |
30 |
29
|
eqeq2d |
|- ( z = x -> ( y = <. z , z >. <-> y = <. x , x >. ) ) |
31 |
30
|
equsexvw |
|- ( E. z ( z = x /\ y = <. z , z >. ) <-> y = <. x , x >. ) |
32 |
27 31
|
bitri |
|- ( ( y e. _I /\ y 1st x ) <-> y = <. x , x >. ) |
33 |
4 32
|
bitri |
|- ( y ( 1st |` _I ) x <-> y = <. x , x >. ) |
34 |
3 33
|
bitri |
|- ( x `' ( 1st |` _I ) y <-> y = <. x , x >. ) |
35 |
34
|
opabbii |
|- { <. x , y >. | x `' ( 1st |` _I ) y } = { <. x , y >. | y = <. x , x >. } |
36 |
|
relcnv |
|- Rel `' ( 1st |` _I ) |
37 |
|
dfrel4v |
|- ( Rel `' ( 1st |` _I ) <-> `' ( 1st |` _I ) = { <. x , y >. | x `' ( 1st |` _I ) y } ) |
38 |
36 37
|
mpbi |
|- `' ( 1st |` _I ) = { <. x , y >. | x `' ( 1st |` _I ) y } |
39 |
|
mptv |
|- ( x e. _V |-> <. x , x >. ) = { <. x , y >. | y = <. x , x >. } |
40 |
35 38 39
|
3eqtr4i |
|- `' ( 1st |` _I ) = ( x e. _V |-> <. x , x >. ) |