Metamath Proof Explorer


Theorem fssdmd

Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, deduction form. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses fssdmd.f
|- ( ph -> F : A --> B )
fssdmd.d
|- ( ph -> D C_ dom F )
Assertion fssdmd
|- ( ph -> D C_ A )

Proof

Step Hyp Ref Expression
1 fssdmd.f
 |-  ( ph -> F : A --> B )
2 fssdmd.d
 |-  ( ph -> D C_ dom F )
3 1 fdmd
 |-  ( ph -> dom F = A )
4 2 3 sseqtrd
 |-  ( ph -> D C_ A )