Metamath Proof Explorer


Theorem fssres2

Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005)

Ref Expression
Assertion fssres2
|- ( ( ( F |` A ) : A --> B /\ C C_ A ) -> ( F |` C ) : C --> B )

Proof

Step Hyp Ref Expression
1 fssres
 |-  ( ( ( F |` A ) : A --> B /\ C C_ A ) -> ( ( F |` A ) |` C ) : C --> B )
2 resabs1
 |-  ( C C_ A -> ( ( F |` A ) |` C ) = ( F |` C ) )
3 2 feq1d
 |-  ( C C_ A -> ( ( ( F |` A ) |` C ) : C --> B <-> ( F |` C ) : C --> B ) )
4 3 adantl
 |-  ( ( ( F |` A ) : A --> B /\ C C_ A ) -> ( ( ( F |` A ) |` C ) : C --> B <-> ( F |` C ) : C --> B ) )
5 1 4 mpbid
 |-  ( ( ( F |` A ) : A --> B /\ C C_ A ) -> ( F |` C ) : C --> B )