Description: Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fssres2 | |- ( ( ( F |` A ) : A --> B /\ C C_ A ) -> ( F |` C ) : C --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssres | |- ( ( ( F |` A ) : A --> B /\ C C_ A ) -> ( ( F |` A ) |` C ) : C --> B ) |
|
| 2 | resabs1 | |- ( C C_ A -> ( ( F |` A ) |` C ) = ( F |` C ) ) |
|
| 3 | 2 | feq1d | |- ( C C_ A -> ( ( ( F |` A ) |` C ) : C --> B <-> ( F |` C ) : C --> B ) ) |
| 4 | 3 | adantl | |- ( ( ( F |` A ) : A --> B /\ C C_ A ) -> ( ( ( F |` A ) |` C ) : C --> B <-> ( F |` C ) : C --> B ) ) |
| 5 | 1 4 | mpbid | |- ( ( ( F |` A ) : A --> B /\ C C_ A ) -> ( F |` C ) : C --> B ) |