Metamath Proof Explorer


Theorem fssrescdmd

Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025)

Ref Expression
Hypotheses fssrescdmd.f
|- ( ph -> F : A --> B )
fssrescdmd.c
|- ( ph -> C C_ A )
fssrescdmd.d
|- ( ph -> ( F " C ) C_ D )
Assertion fssrescdmd
|- ( ph -> ( F |` C ) : C --> D )

Proof

Step Hyp Ref Expression
1 fssrescdmd.f
 |-  ( ph -> F : A --> B )
2 fssrescdmd.c
 |-  ( ph -> C C_ A )
3 fssrescdmd.d
 |-  ( ph -> ( F " C ) C_ D )
4 1 ffnd
 |-  ( ph -> F Fn A )
5 4 2 fnssresd
 |-  ( ph -> ( F |` C ) Fn C )
6 resima
 |-  ( ( F |` C ) " C ) = ( F " C )
7 6 3 eqsstrid
 |-  ( ph -> ( ( F |` C ) " C ) C_ D )
8 1 ffund
 |-  ( ph -> Fun F )
9 8 funresd
 |-  ( ph -> Fun ( F |` C ) )
10 1 fdmd
 |-  ( ph -> dom F = A )
11 2 10 sseqtrrd
 |-  ( ph -> C C_ dom F )
12 ssdmres
 |-  ( C C_ dom F <-> dom ( F |` C ) = C )
13 12 a1i
 |-  ( ph -> ( C C_ dom F <-> dom ( F |` C ) = C ) )
14 eqcom
 |-  ( dom ( F |` C ) = C <-> C = dom ( F |` C ) )
15 13 14 bitrdi
 |-  ( ph -> ( C C_ dom F <-> C = dom ( F |` C ) ) )
16 11 15 mpbid
 |-  ( ph -> C = dom ( F |` C ) )
17 16 eqimssd
 |-  ( ph -> C C_ dom ( F |` C ) )
18 funimass4
 |-  ( ( Fun ( F |` C ) /\ C C_ dom ( F |` C ) ) -> ( ( ( F |` C ) " C ) C_ D <-> A. x e. C ( ( F |` C ) ` x ) e. D ) )
19 9 17 18 syl2anc
 |-  ( ph -> ( ( ( F |` C ) " C ) C_ D <-> A. x e. C ( ( F |` C ) ` x ) e. D ) )
20 7 19 mpbid
 |-  ( ph -> A. x e. C ( ( F |` C ) ` x ) e. D )
21 ffnfv
 |-  ( ( F |` C ) : C --> D <-> ( ( F |` C ) Fn C /\ A. x e. C ( ( F |` C ) ` x ) e. D ) )
22 5 20 21 sylanbrc
 |-  ( ph -> ( F |` C ) : C --> D )