| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fssrescdmd.f |  |-  ( ph -> F : A --> B ) | 
						
							| 2 |  | fssrescdmd.c |  |-  ( ph -> C C_ A ) | 
						
							| 3 |  | fssrescdmd.d |  |-  ( ph -> ( F " C ) C_ D ) | 
						
							| 4 | 1 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 5 | 4 2 | fnssresd |  |-  ( ph -> ( F |` C ) Fn C ) | 
						
							| 6 |  | resima |  |-  ( ( F |` C ) " C ) = ( F " C ) | 
						
							| 7 | 6 3 | eqsstrid |  |-  ( ph -> ( ( F |` C ) " C ) C_ D ) | 
						
							| 8 | 1 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 9 | 8 | funresd |  |-  ( ph -> Fun ( F |` C ) ) | 
						
							| 10 | 1 | fdmd |  |-  ( ph -> dom F = A ) | 
						
							| 11 | 2 10 | sseqtrrd |  |-  ( ph -> C C_ dom F ) | 
						
							| 12 |  | ssdmres |  |-  ( C C_ dom F <-> dom ( F |` C ) = C ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( C C_ dom F <-> dom ( F |` C ) = C ) ) | 
						
							| 14 |  | eqcom |  |-  ( dom ( F |` C ) = C <-> C = dom ( F |` C ) ) | 
						
							| 15 | 13 14 | bitrdi |  |-  ( ph -> ( C C_ dom F <-> C = dom ( F |` C ) ) ) | 
						
							| 16 | 11 15 | mpbid |  |-  ( ph -> C = dom ( F |` C ) ) | 
						
							| 17 | 16 | eqimssd |  |-  ( ph -> C C_ dom ( F |` C ) ) | 
						
							| 18 |  | funimass4 |  |-  ( ( Fun ( F |` C ) /\ C C_ dom ( F |` C ) ) -> ( ( ( F |` C ) " C ) C_ D <-> A. x e. C ( ( F |` C ) ` x ) e. D ) ) | 
						
							| 19 | 9 17 18 | syl2anc |  |-  ( ph -> ( ( ( F |` C ) " C ) C_ D <-> A. x e. C ( ( F |` C ) ` x ) e. D ) ) | 
						
							| 20 | 7 19 | mpbid |  |-  ( ph -> A. x e. C ( ( F |` C ) ` x ) e. D ) | 
						
							| 21 |  | ffnfv |  |-  ( ( F |` C ) : C --> D <-> ( ( F |` C ) Fn C /\ A. x e. C ( ( F |` C ) ` x ) e. D ) ) | 
						
							| 22 | 5 20 21 | sylanbrc |  |-  ( ph -> ( F |` C ) : C --> D ) |