Metamath Proof Explorer


Theorem fssresd

Description: Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fssresd.1
|- ( ph -> F : A --> B )
fssresd.2
|- ( ph -> C C_ A )
Assertion fssresd
|- ( ph -> ( F |` C ) : C --> B )

Proof

Step Hyp Ref Expression
1 fssresd.1
 |-  ( ph -> F : A --> B )
2 fssresd.2
 |-  ( ph -> C C_ A )
3 fssres
 |-  ( ( F : A --> B /\ C C_ A ) -> ( F |` C ) : C --> B )
4 1 2 3 syl2anc
 |-  ( ph -> ( F |` C ) : C --> B )