Metamath Proof Explorer


Theorem fstwrdne

Description: The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 28-Sep-2018) (Proof shortened by AV, 14-Oct-2018)

Ref Expression
Assertion fstwrdne
|- ( ( W e. Word V /\ W =/= (/) ) -> ( W ` 0 ) e. V )

Proof

Step Hyp Ref Expression
1 wrdlenge1n0
 |-  ( W e. Word V -> ( W =/= (/) <-> 1 <_ ( # ` W ) ) )
2 wrdsymb1
 |-  ( ( W e. Word V /\ 1 <_ ( # ` W ) ) -> ( W ` 0 ) e. V )
3 2 ex
 |-  ( W e. Word V -> ( 1 <_ ( # ` W ) -> ( W ` 0 ) e. V ) )
4 1 3 sylbid
 |-  ( W e. Word V -> ( W =/= (/) -> ( W ` 0 ) e. V ) )
5 4 imp
 |-  ( ( W e. Word V /\ W =/= (/) ) -> ( W ` 0 ) e. V )