| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fbasne0 |  |-  ( ( fi ` A ) e. ( fBas ` X ) -> ( fi ` A ) =/= (/) ) | 
						
							| 2 |  | fvprc |  |-  ( -. A e. _V -> ( fi ` A ) = (/) ) | 
						
							| 3 | 2 | necon1ai |  |-  ( ( fi ` A ) =/= (/) -> A e. _V ) | 
						
							| 4 | 1 3 | syl |  |-  ( ( fi ` A ) e. ( fBas ` X ) -> A e. _V ) | 
						
							| 5 |  | ssfii |  |-  ( A e. _V -> A C_ ( fi ` A ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( fi ` A ) e. ( fBas ` X ) -> A C_ ( fi ` A ) ) | 
						
							| 7 |  | fbsspw |  |-  ( ( fi ` A ) e. ( fBas ` X ) -> ( fi ` A ) C_ ~P X ) | 
						
							| 8 | 6 7 | sstrd |  |-  ( ( fi ` A ) e. ( fBas ` X ) -> A C_ ~P X ) | 
						
							| 9 |  | fieq0 |  |-  ( A e. _V -> ( A = (/) <-> ( fi ` A ) = (/) ) ) | 
						
							| 10 | 9 | necon3bid |  |-  ( A e. _V -> ( A =/= (/) <-> ( fi ` A ) =/= (/) ) ) | 
						
							| 11 | 10 | biimpar |  |-  ( ( A e. _V /\ ( fi ` A ) =/= (/) ) -> A =/= (/) ) | 
						
							| 12 | 4 1 11 | syl2anc |  |-  ( ( fi ` A ) e. ( fBas ` X ) -> A =/= (/) ) | 
						
							| 13 |  | 0nelfb |  |-  ( ( fi ` A ) e. ( fBas ` X ) -> -. (/) e. ( fi ` A ) ) | 
						
							| 14 | 8 12 13 | 3jca |  |-  ( ( fi ` A ) e. ( fBas ` X ) -> ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) | 
						
							| 15 |  | simpr1 |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> A C_ ~P X ) | 
						
							| 16 |  | fipwss |  |-  ( A C_ ~P X -> ( fi ` A ) C_ ~P X ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( fi ` A ) C_ ~P X ) | 
						
							| 18 |  | pwexg |  |-  ( X e. V -> ~P X e. _V ) | 
						
							| 19 | 18 | adantr |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ~P X e. _V ) | 
						
							| 20 | 19 15 | ssexd |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> A e. _V ) | 
						
							| 21 |  | simpr2 |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> A =/= (/) ) | 
						
							| 22 | 10 | biimpa |  |-  ( ( A e. _V /\ A =/= (/) ) -> ( fi ` A ) =/= (/) ) | 
						
							| 23 | 20 21 22 | syl2anc |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( fi ` A ) =/= (/) ) | 
						
							| 24 |  | simpr3 |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> -. (/) e. ( fi ` A ) ) | 
						
							| 25 |  | df-nel |  |-  ( (/) e/ ( fi ` A ) <-> -. (/) e. ( fi ` A ) ) | 
						
							| 26 | 24 25 | sylibr |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> (/) e/ ( fi ` A ) ) | 
						
							| 27 |  | fiin |  |-  ( ( x e. ( fi ` A ) /\ y e. ( fi ` A ) ) -> ( x i^i y ) e. ( fi ` A ) ) | 
						
							| 28 |  | ssid |  |-  ( x i^i y ) C_ ( x i^i y ) | 
						
							| 29 |  | sseq1 |  |-  ( z = ( x i^i y ) -> ( z C_ ( x i^i y ) <-> ( x i^i y ) C_ ( x i^i y ) ) ) | 
						
							| 30 | 29 | rspcev |  |-  ( ( ( x i^i y ) e. ( fi ` A ) /\ ( x i^i y ) C_ ( x i^i y ) ) -> E. z e. ( fi ` A ) z C_ ( x i^i y ) ) | 
						
							| 31 | 27 28 30 | sylancl |  |-  ( ( x e. ( fi ` A ) /\ y e. ( fi ` A ) ) -> E. z e. ( fi ` A ) z C_ ( x i^i y ) ) | 
						
							| 32 | 31 | rgen2 |  |-  A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) | 
						
							| 33 | 32 | a1i |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) ) | 
						
							| 34 | 23 26 33 | 3jca |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( ( fi ` A ) =/= (/) /\ (/) e/ ( fi ` A ) /\ A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) ) ) | 
						
							| 35 |  | isfbas2 |  |-  ( X e. V -> ( ( fi ` A ) e. ( fBas ` X ) <-> ( ( fi ` A ) C_ ~P X /\ ( ( fi ` A ) =/= (/) /\ (/) e/ ( fi ` A ) /\ A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) ) ) ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( ( fi ` A ) e. ( fBas ` X ) <-> ( ( fi ` A ) C_ ~P X /\ ( ( fi ` A ) =/= (/) /\ (/) e/ ( fi ` A ) /\ A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) ) ) ) ) | 
						
							| 37 | 17 34 36 | mpbir2and |  |-  ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( fi ` A ) e. ( fBas ` X ) ) | 
						
							| 38 | 37 | ex |  |-  ( X e. V -> ( ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) -> ( fi ` A ) e. ( fBas ` X ) ) ) | 
						
							| 39 | 14 38 | impbid2 |  |-  ( X e. V -> ( ( fi ` A ) e. ( fBas ` X ) <-> ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) ) |