| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzle1 |
|- ( j e. ( 0 ... N ) -> 0 <_ j ) |
| 2 |
1
|
adantr |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> 0 <_ j ) |
| 3 |
|
elfz3nn0 |
|- ( j e. ( 0 ... N ) -> N e. NN0 ) |
| 4 |
3
|
adantr |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> N e. NN0 ) |
| 5 |
4
|
nn0zd |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> N e. ZZ ) |
| 6 |
5
|
zred |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> N e. RR ) |
| 7 |
|
elfzelz |
|- ( j e. ( 0 ... N ) -> j e. ZZ ) |
| 8 |
7
|
adantr |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j e. ZZ ) |
| 9 |
8
|
zred |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j e. RR ) |
| 10 |
6 9
|
subge02d |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( 0 <_ j <-> ( N - j ) <_ N ) ) |
| 11 |
2 10
|
mpbid |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( N - j ) <_ N ) |
| 12 |
5 8
|
zsubcld |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( N - j ) e. ZZ ) |
| 13 |
|
eluz |
|- ( ( ( N - j ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( N - j ) ) <-> ( N - j ) <_ N ) ) |
| 14 |
12 5 13
|
syl2anc |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( N e. ( ZZ>= ` ( N - j ) ) <-> ( N - j ) <_ N ) ) |
| 15 |
11 14
|
mpbird |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> N e. ( ZZ>= ` ( N - j ) ) ) |
| 16 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - j ) ) -> ( 0 ... ( N - j ) ) C_ ( 0 ... N ) ) |
| 17 |
15 16
|
syl |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( 0 ... ( N - j ) ) C_ ( 0 ... N ) ) |
| 18 |
|
simpr |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k e. ( 0 ... ( N - j ) ) ) |
| 19 |
17 18
|
sseldd |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k e. ( 0 ... N ) ) |
| 20 |
|
elfzelz |
|- ( k e. ( 0 ... ( N - j ) ) -> k e. ZZ ) |
| 21 |
20
|
adantl |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k e. ZZ ) |
| 22 |
21
|
zred |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k e. RR ) |
| 23 |
|
elfzle2 |
|- ( k e. ( 0 ... ( N - j ) ) -> k <_ ( N - j ) ) |
| 24 |
23
|
adantl |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k <_ ( N - j ) ) |
| 25 |
22 6 9 24
|
lesubd |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j <_ ( N - k ) ) |
| 26 |
|
elfzuz |
|- ( j e. ( 0 ... N ) -> j e. ( ZZ>= ` 0 ) ) |
| 27 |
26
|
adantr |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j e. ( ZZ>= ` 0 ) ) |
| 28 |
5 21
|
zsubcld |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( N - k ) e. ZZ ) |
| 29 |
|
elfz5 |
|- ( ( j e. ( ZZ>= ` 0 ) /\ ( N - k ) e. ZZ ) -> ( j e. ( 0 ... ( N - k ) ) <-> j <_ ( N - k ) ) ) |
| 30 |
27 28 29
|
syl2anc |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( j e. ( 0 ... ( N - k ) ) <-> j <_ ( N - k ) ) ) |
| 31 |
25 30
|
mpbird |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j e. ( 0 ... ( N - k ) ) ) |
| 32 |
19 31
|
jca |
|- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) |