Description: The finite sum of A ( k ) from k = M to M (i.e. a sum with only one term) is B i.e. A ( M ) . (Contributed by NM, 8-Nov-2005) (Revised by Mario Carneiro, 21-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fsum1.1 | |- ( k = M -> A = B ) |
|
Assertion | fsum1 | |- ( ( M e. ZZ /\ B e. CC ) -> sum_ k e. ( M ... M ) A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsum1.1 | |- ( k = M -> A = B ) |
|
2 | fzsn | |- ( M e. ZZ -> ( M ... M ) = { M } ) |
|
3 | 2 | adantr | |- ( ( M e. ZZ /\ B e. CC ) -> ( M ... M ) = { M } ) |
4 | 3 | sumeq1d | |- ( ( M e. ZZ /\ B e. CC ) -> sum_ k e. ( M ... M ) A = sum_ k e. { M } A ) |
5 | 1 | sumsn | |- ( ( M e. ZZ /\ B e. CC ) -> sum_ k e. { M } A = B ) |
6 | 4 5 | eqtrd | |- ( ( M e. ZZ /\ B e. CC ) -> sum_ k e. ( M ... M ) A = B ) |