Description: The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumre.1 | |- ( ph -> A e. Fin ) |
|
fsumre.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
Assertion | fsumcj | |- ( ph -> ( * ` sum_ k e. A B ) = sum_ k e. A ( * ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumre.1 | |- ( ph -> A e. Fin ) |
|
2 | fsumre.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
3 | cjf | |- * : CC --> CC |
|
4 | cjadd | |- ( ( x e. CC /\ y e. CC ) -> ( * ` ( x + y ) ) = ( ( * ` x ) + ( * ` y ) ) ) |
|
5 | 1 2 3 4 | fsumrelem | |- ( ph -> ( * ` sum_ k e. A B ) = sum_ k e. A ( * ` B ) ) |