Metamath Proof Explorer


Theorem fsumcj

Description: The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)

Ref Expression
Hypotheses fsumre.1
|- ( ph -> A e. Fin )
fsumre.2
|- ( ( ph /\ k e. A ) -> B e. CC )
Assertion fsumcj
|- ( ph -> ( * ` sum_ k e. A B ) = sum_ k e. A ( * ` B ) )

Proof

Step Hyp Ref Expression
1 fsumre.1
 |-  ( ph -> A e. Fin )
2 fsumre.2
 |-  ( ( ph /\ k e. A ) -> B e. CC )
3 cjf
 |-  * : CC --> CC
4 cjadd
 |-  ( ( x e. CC /\ y e. CC ) -> ( * ` ( x + y ) ) = ( ( * ` x ) + ( * ` y ) ) )
5 1 2 3 4 fsumrelem
 |-  ( ph -> ( * ` sum_ k e. A B ) = sum_ k e. A ( * ` B ) )