Metamath Proof Explorer


Theorem fsumcl

Description: Closure of a finite sum of complex numbers A ( k ) . (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 22-Apr-2014)

Ref Expression
Hypotheses fsumcl.1
|- ( ph -> A e. Fin )
fsumcl.2
|- ( ( ph /\ k e. A ) -> B e. CC )
Assertion fsumcl
|- ( ph -> sum_ k e. A B e. CC )

Proof

Step Hyp Ref Expression
1 fsumcl.1
 |-  ( ph -> A e. Fin )
2 fsumcl.2
 |-  ( ( ph /\ k e. A ) -> B e. CC )
3 ssidd
 |-  ( ph -> CC C_ CC )
4 addcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC )
5 4 adantl
 |-  ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC )
6 0cnd
 |-  ( ph -> 0 e. CC )
7 3 5 1 2 6 fsumcllem
 |-  ( ph -> sum_ k e. A B e. CC )