| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumcllem.1 |
|- ( ph -> S C_ CC ) |
| 2 |
|
fsumcllem.2 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 3 |
|
fsumcllem.3 |
|- ( ph -> A e. Fin ) |
| 4 |
|
fsumcllem.4 |
|- ( ( ph /\ k e. A ) -> B e. S ) |
| 5 |
|
fsumcl2lem.5 |
|- ( ph -> A =/= (/) ) |
| 6 |
5
|
a1d |
|- ( ph -> ( -. sum_ k e. A B e. S -> A =/= (/) ) ) |
| 7 |
6
|
necon4bd |
|- ( ph -> ( A = (/) -> sum_ k e. A B e. S ) ) |
| 8 |
|
sumfc |
|- sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ k e. A B |
| 9 |
|
fveq2 |
|- ( m = ( f ` x ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
| 10 |
|
simprl |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
| 11 |
|
simprr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 12 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> S C_ CC ) |
| 13 |
4
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> S ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> S ) |
| 15 |
14
|
ffvelcdmda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. S ) |
| 16 |
12 15
|
sseldd |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
| 17 |
|
f1of |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 18 |
11 17
|
syl |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 19 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` x ) = ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
| 20 |
18 19
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` x ) = ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
| 21 |
9 10 11 16 20
|
fsum |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 22 |
8 21
|
eqtr3id |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A B = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 23 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 24 |
10 23
|
eleqtrdi |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 25 |
|
fco |
|- ( ( ( k e. A |-> B ) : A --> S /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> S ) |
| 26 |
14 18 25
|
syl2anc |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> S ) |
| 27 |
26
|
ffvelcdmda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` x ) e. S ) |
| 28 |
2
|
adantlr |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 29 |
24 27 28
|
seqcl |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) e. S ) |
| 30 |
22 29
|
eqeltrd |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A B e. S ) |
| 31 |
30
|
expr |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A B e. S ) ) |
| 32 |
31
|
exlimdv |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A B e. S ) ) |
| 33 |
32
|
expimpd |
|- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A B e. S ) ) |
| 34 |
|
fz1f1o |
|- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 35 |
3 34
|
syl |
|- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 36 |
7 33 35
|
mpjaod |
|- ( ph -> sum_ k e. A B e. S ) |