Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcllem.1 |
|- ( ph -> S C_ CC ) |
2 |
|
fsumcllem.2 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
3 |
|
fsumcllem.3 |
|- ( ph -> A e. Fin ) |
4 |
|
fsumcllem.4 |
|- ( ( ph /\ k e. A ) -> B e. S ) |
5 |
|
fsumcllem.5 |
|- ( ph -> 0 e. S ) |
6 |
|
simpr |
|- ( ( ph /\ A = (/) ) -> A = (/) ) |
7 |
6
|
sumeq1d |
|- ( ( ph /\ A = (/) ) -> sum_ k e. A B = sum_ k e. (/) B ) |
8 |
|
sum0 |
|- sum_ k e. (/) B = 0 |
9 |
7 8
|
eqtrdi |
|- ( ( ph /\ A = (/) ) -> sum_ k e. A B = 0 ) |
10 |
5
|
adantr |
|- ( ( ph /\ A = (/) ) -> 0 e. S ) |
11 |
9 10
|
eqeltrd |
|- ( ( ph /\ A = (/) ) -> sum_ k e. A B e. S ) |
12 |
1
|
adantr |
|- ( ( ph /\ A =/= (/) ) -> S C_ CC ) |
13 |
2
|
adantlr |
|- ( ( ( ph /\ A =/= (/) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
14 |
3
|
adantr |
|- ( ( ph /\ A =/= (/) ) -> A e. Fin ) |
15 |
4
|
adantlr |
|- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> B e. S ) |
16 |
|
simpr |
|- ( ( ph /\ A =/= (/) ) -> A =/= (/) ) |
17 |
12 13 14 15 16
|
fsumcl2lem |
|- ( ( ph /\ A =/= (/) ) -> sum_ k e. A B e. S ) |
18 |
11 17
|
pm2.61dane |
|- ( ph -> sum_ k e. A B e. S ) |