| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumcllem.1 |
|- ( ph -> S C_ CC ) |
| 2 |
|
fsumcllem.2 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 3 |
|
fsumcllem.3 |
|- ( ph -> A e. Fin ) |
| 4 |
|
fsumcllem.4 |
|- ( ( ph /\ k e. A ) -> B e. S ) |
| 5 |
|
fsumcllem.5 |
|- ( ph -> 0 e. S ) |
| 6 |
|
simpr |
|- ( ( ph /\ A = (/) ) -> A = (/) ) |
| 7 |
6
|
sumeq1d |
|- ( ( ph /\ A = (/) ) -> sum_ k e. A B = sum_ k e. (/) B ) |
| 8 |
|
sum0 |
|- sum_ k e. (/) B = 0 |
| 9 |
7 8
|
eqtrdi |
|- ( ( ph /\ A = (/) ) -> sum_ k e. A B = 0 ) |
| 10 |
5
|
adantr |
|- ( ( ph /\ A = (/) ) -> 0 e. S ) |
| 11 |
9 10
|
eqeltrd |
|- ( ( ph /\ A = (/) ) -> sum_ k e. A B e. S ) |
| 12 |
1
|
adantr |
|- ( ( ph /\ A =/= (/) ) -> S C_ CC ) |
| 13 |
2
|
adantlr |
|- ( ( ( ph /\ A =/= (/) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 14 |
3
|
adantr |
|- ( ( ph /\ A =/= (/) ) -> A e. Fin ) |
| 15 |
4
|
adantlr |
|- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> B e. S ) |
| 16 |
|
simpr |
|- ( ( ph /\ A =/= (/) ) -> A =/= (/) ) |
| 17 |
12 13 14 15 16
|
fsumcl2lem |
|- ( ( ph /\ A =/= (/) ) -> sum_ k e. A B e. S ) |
| 18 |
11 17
|
pm2.61dane |
|- ( ph -> sum_ k e. A B e. S ) |