Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcncf.x |
|- ( ph -> X C_ CC ) |
2 |
|
fsumcncf.a |
|- ( ph -> A e. Fin ) |
3 |
|
fsumcncf.cncf |
|- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
4 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
5 |
4
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
6 |
5
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
7 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ X C_ CC ) -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
8 |
6 1 7
|
syl2anc |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t X ) e. ( TopOn ` X ) ) |
9 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
10 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
11 |
4
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
12 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
13 |
12
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
14 |
11 13
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
15 |
14
|
eqcomi |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
16 |
4 10 15
|
cncfcn |
|- ( ( X C_ CC /\ CC C_ CC ) -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
17 |
1 9 16
|
syl2anc |
|- ( ph -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
18 |
17
|
adantr |
|- ( ( ph /\ k e. A ) -> ( X -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
19 |
3 18
|
eleqtrd |
|- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
20 |
4 8 2 19
|
fsumcnf |
|- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( ( ( TopOpen ` CCfld ) |`t X ) Cn ( TopOpen ` CCfld ) ) ) |
21 |
20 17
|
eleqtrrd |
|- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( X -cn-> CC ) ) |