Description: Interchange order of summation. (Contributed by NM, 15-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumcom.1 | |- ( ph -> A e. Fin ) |
|
fsumcom.2 | |- ( ph -> B e. Fin ) |
||
fsumcom.3 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) |
||
Assertion | fsumcom | |- ( ph -> sum_ j e. A sum_ k e. B C = sum_ k e. B sum_ j e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumcom.1 | |- ( ph -> A e. Fin ) |
|
2 | fsumcom.2 | |- ( ph -> B e. Fin ) |
|
3 | fsumcom.3 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) |
|
4 | 2 | adantr | |- ( ( ph /\ j e. A ) -> B e. Fin ) |
5 | ancom | |- ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) ) |
|
6 | 5 | a1i | |- ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) ) ) |
7 | 1 2 4 6 3 | fsumcom2 | |- ( ph -> sum_ j e. A sum_ k e. B C = sum_ k e. B sum_ j e. A C ) |