Metamath Proof Explorer


Theorem fsumcom

Description: Interchange order of summation. (Contributed by NM, 15-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsumcom.1
|- ( ph -> A e. Fin )
fsumcom.2
|- ( ph -> B e. Fin )
fsumcom.3
|- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC )
Assertion fsumcom
|- ( ph -> sum_ j e. A sum_ k e. B C = sum_ k e. B sum_ j e. A C )

Proof

Step Hyp Ref Expression
1 fsumcom.1
 |-  ( ph -> A e. Fin )
2 fsumcom.2
 |-  ( ph -> B e. Fin )
3 fsumcom.3
 |-  ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC )
4 2 adantr
 |-  ( ( ph /\ j e. A ) -> B e. Fin )
5 ancom
 |-  ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) )
6 5 a1i
 |-  ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) ) )
7 1 2 4 6 3 fsumcom2
 |-  ( ph -> sum_ j e. A sum_ k e. B C = sum_ k e. B sum_ j e. A C )