Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcom2.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsumcom2.2 |
|- ( ph -> C e. Fin ) |
3 |
|
fsumcom2.3 |
|- ( ( ph /\ j e. A ) -> B e. Fin ) |
4 |
|
fsumcom2.4 |
|- ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. C /\ j e. D ) ) ) |
5 |
|
fsumcom2.5 |
|- ( ( ph /\ ( j e. A /\ k e. B ) ) -> E e. CC ) |
6 |
|
relxp |
|- Rel ( { j } X. B ) |
7 |
6
|
rgenw |
|- A. j e. A Rel ( { j } X. B ) |
8 |
|
reliun |
|- ( Rel U_ j e. A ( { j } X. B ) <-> A. j e. A Rel ( { j } X. B ) ) |
9 |
7 8
|
mpbir |
|- Rel U_ j e. A ( { j } X. B ) |
10 |
|
relcnv |
|- Rel `' U_ k e. C ( { k } X. D ) |
11 |
|
ancom |
|- ( ( x = j /\ y = k ) <-> ( y = k /\ x = j ) ) |
12 |
|
vex |
|- x e. _V |
13 |
|
vex |
|- y e. _V |
14 |
12 13
|
opth |
|- ( <. x , y >. = <. j , k >. <-> ( x = j /\ y = k ) ) |
15 |
13 12
|
opth |
|- ( <. y , x >. = <. k , j >. <-> ( y = k /\ x = j ) ) |
16 |
11 14 15
|
3bitr4i |
|- ( <. x , y >. = <. j , k >. <-> <. y , x >. = <. k , j >. ) |
17 |
16
|
a1i |
|- ( ph -> ( <. x , y >. = <. j , k >. <-> <. y , x >. = <. k , j >. ) ) |
18 |
17 4
|
anbi12d |
|- ( ph -> ( ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) <-> ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) ) |
19 |
18
|
2exbidv |
|- ( ph -> ( E. j E. k ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) ) |
20 |
|
eliunxp |
|- ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> E. j E. k ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) ) |
21 |
12 13
|
opelcnv |
|- ( <. x , y >. e. `' U_ k e. C ( { k } X. D ) <-> <. y , x >. e. U_ k e. C ( { k } X. D ) ) |
22 |
|
eliunxp |
|- ( <. y , x >. e. U_ k e. C ( { k } X. D ) <-> E. k E. j ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
23 |
|
excom |
|- ( E. k E. j ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
24 |
21 22 23
|
3bitri |
|- ( <. x , y >. e. `' U_ k e. C ( { k } X. D ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
25 |
19 20 24
|
3bitr4g |
|- ( ph -> ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> <. x , y >. e. `' U_ k e. C ( { k } X. D ) ) ) |
26 |
9 10 25
|
eqrelrdv |
|- ( ph -> U_ j e. A ( { j } X. B ) = `' U_ k e. C ( { k } X. D ) ) |
27 |
|
nfcv |
|- F/_ m ( { j } X. B ) |
28 |
|
nfcv |
|- F/_ j { m } |
29 |
|
nfcsb1v |
|- F/_ j [_ m / j ]_ B |
30 |
28 29
|
nfxp |
|- F/_ j ( { m } X. [_ m / j ]_ B ) |
31 |
|
sneq |
|- ( j = m -> { j } = { m } ) |
32 |
|
csbeq1a |
|- ( j = m -> B = [_ m / j ]_ B ) |
33 |
31 32
|
xpeq12d |
|- ( j = m -> ( { j } X. B ) = ( { m } X. [_ m / j ]_ B ) ) |
34 |
27 30 33
|
cbviun |
|- U_ j e. A ( { j } X. B ) = U_ m e. A ( { m } X. [_ m / j ]_ B ) |
35 |
|
nfcv |
|- F/_ n ( { k } X. D ) |
36 |
|
nfcv |
|- F/_ k { n } |
37 |
|
nfcsb1v |
|- F/_ k [_ n / k ]_ D |
38 |
36 37
|
nfxp |
|- F/_ k ( { n } X. [_ n / k ]_ D ) |
39 |
|
sneq |
|- ( k = n -> { k } = { n } ) |
40 |
|
csbeq1a |
|- ( k = n -> D = [_ n / k ]_ D ) |
41 |
39 40
|
xpeq12d |
|- ( k = n -> ( { k } X. D ) = ( { n } X. [_ n / k ]_ D ) ) |
42 |
35 38 41
|
cbviun |
|- U_ k e. C ( { k } X. D ) = U_ n e. C ( { n } X. [_ n / k ]_ D ) |
43 |
42
|
cnveqi |
|- `' U_ k e. C ( { k } X. D ) = `' U_ n e. C ( { n } X. [_ n / k ]_ D ) |
44 |
26 34 43
|
3eqtr3g |
|- ( ph -> U_ m e. A ( { m } X. [_ m / j ]_ B ) = `' U_ n e. C ( { n } X. [_ n / k ]_ D ) ) |
45 |
44
|
sumeq1d |
|- ( ph -> sum_ z e. U_ m e. A ( { m } X. [_ m / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = sum_ z e. `' U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
46 |
|
vex |
|- n e. _V |
47 |
|
vex |
|- m e. _V |
48 |
46 47
|
op1std |
|- ( w = <. n , m >. -> ( 1st ` w ) = n ) |
49 |
48
|
csbeq1d |
|- ( w = <. n , m >. -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ n / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
50 |
46 47
|
op2ndd |
|- ( w = <. n , m >. -> ( 2nd ` w ) = m ) |
51 |
50
|
csbeq1d |
|- ( w = <. n , m >. -> [_ ( 2nd ` w ) / j ]_ E = [_ m / j ]_ E ) |
52 |
51
|
csbeq2dv |
|- ( w = <. n , m >. -> [_ n / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
53 |
49 52
|
eqtrd |
|- ( w = <. n , m >. -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
54 |
47 46
|
op2ndd |
|- ( z = <. m , n >. -> ( 2nd ` z ) = n ) |
55 |
54
|
csbeq1d |
|- ( z = <. m , n >. -> [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ n / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
56 |
47 46
|
op1std |
|- ( z = <. m , n >. -> ( 1st ` z ) = m ) |
57 |
56
|
csbeq1d |
|- ( z = <. m , n >. -> [_ ( 1st ` z ) / j ]_ E = [_ m / j ]_ E ) |
58 |
57
|
csbeq2dv |
|- ( z = <. m , n >. -> [_ n / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
59 |
55 58
|
eqtrd |
|- ( z = <. m , n >. -> [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
60 |
|
snfi |
|- { n } e. Fin |
61 |
1
|
adantr |
|- ( ( ph /\ n e. C ) -> A e. Fin ) |
62 |
47 46
|
opelcnv |
|- ( <. m , n >. e. `' U_ k e. C ( { k } X. D ) <-> <. n , m >. e. U_ k e. C ( { k } X. D ) ) |
63 |
37 40
|
opeliunxp2f |
|- ( <. n , m >. e. U_ k e. C ( { k } X. D ) <-> ( n e. C /\ m e. [_ n / k ]_ D ) ) |
64 |
62 63
|
sylbbr |
|- ( ( n e. C /\ m e. [_ n / k ]_ D ) -> <. m , n >. e. `' U_ k e. C ( { k } X. D ) ) |
65 |
64
|
adantl |
|- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> <. m , n >. e. `' U_ k e. C ( { k } X. D ) ) |
66 |
26
|
adantr |
|- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> U_ j e. A ( { j } X. B ) = `' U_ k e. C ( { k } X. D ) ) |
67 |
65 66
|
eleqtrrd |
|- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> <. m , n >. e. U_ j e. A ( { j } X. B ) ) |
68 |
|
eliun |
|- ( <. m , n >. e. U_ j e. A ( { j } X. B ) <-> E. j e. A <. m , n >. e. ( { j } X. B ) ) |
69 |
67 68
|
sylib |
|- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> E. j e. A <. m , n >. e. ( { j } X. B ) ) |
70 |
|
simpr |
|- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> <. m , n >. e. ( { j } X. B ) ) |
71 |
|
opelxp |
|- ( <. m , n >. e. ( { j } X. B ) <-> ( m e. { j } /\ n e. B ) ) |
72 |
70 71
|
sylib |
|- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> ( m e. { j } /\ n e. B ) ) |
73 |
72
|
simpld |
|- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> m e. { j } ) |
74 |
|
elsni |
|- ( m e. { j } -> m = j ) |
75 |
73 74
|
syl |
|- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> m = j ) |
76 |
|
simpl |
|- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> j e. A ) |
77 |
75 76
|
eqeltrd |
|- ( ( j e. A /\ <. m , n >. e. ( { j } X. B ) ) -> m e. A ) |
78 |
77
|
rexlimiva |
|- ( E. j e. A <. m , n >. e. ( { j } X. B ) -> m e. A ) |
79 |
69 78
|
syl |
|- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> m e. A ) |
80 |
79
|
expr |
|- ( ( ph /\ n e. C ) -> ( m e. [_ n / k ]_ D -> m e. A ) ) |
81 |
80
|
ssrdv |
|- ( ( ph /\ n e. C ) -> [_ n / k ]_ D C_ A ) |
82 |
61 81
|
ssfid |
|- ( ( ph /\ n e. C ) -> [_ n / k ]_ D e. Fin ) |
83 |
|
xpfi |
|- ( ( { n } e. Fin /\ [_ n / k ]_ D e. Fin ) -> ( { n } X. [_ n / k ]_ D ) e. Fin ) |
84 |
60 82 83
|
sylancr |
|- ( ( ph /\ n e. C ) -> ( { n } X. [_ n / k ]_ D ) e. Fin ) |
85 |
84
|
ralrimiva |
|- ( ph -> A. n e. C ( { n } X. [_ n / k ]_ D ) e. Fin ) |
86 |
|
iunfi |
|- ( ( C e. Fin /\ A. n e. C ( { n } X. [_ n / k ]_ D ) e. Fin ) -> U_ n e. C ( { n } X. [_ n / k ]_ D ) e. Fin ) |
87 |
2 85 86
|
syl2anc |
|- ( ph -> U_ n e. C ( { n } X. [_ n / k ]_ D ) e. Fin ) |
88 |
|
reliun |
|- ( Rel U_ n e. C ( { n } X. [_ n / k ]_ D ) <-> A. n e. C Rel ( { n } X. [_ n / k ]_ D ) ) |
89 |
|
relxp |
|- Rel ( { n } X. [_ n / k ]_ D ) |
90 |
89
|
a1i |
|- ( n e. C -> Rel ( { n } X. [_ n / k ]_ D ) ) |
91 |
88 90
|
mprgbir |
|- Rel U_ n e. C ( { n } X. [_ n / k ]_ D ) |
92 |
91
|
a1i |
|- ( ph -> Rel U_ n e. C ( { n } X. [_ n / k ]_ D ) ) |
93 |
|
csbeq1 |
|- ( m = ( 2nd ` w ) -> [_ m / j ]_ E = [_ ( 2nd ` w ) / j ]_ E ) |
94 |
93
|
csbeq2dv |
|- ( m = ( 2nd ` w ) -> [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E = [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
95 |
94
|
eleq1d |
|- ( m = ( 2nd ` w ) -> ( [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E e. CC <-> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E e. CC ) ) |
96 |
|
csbeq1 |
|- ( n = ( 1st ` w ) -> [_ n / k ]_ D = [_ ( 1st ` w ) / k ]_ D ) |
97 |
|
csbeq1 |
|- ( n = ( 1st ` w ) -> [_ n / k ]_ [_ m / j ]_ E = [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E ) |
98 |
97
|
eleq1d |
|- ( n = ( 1st ` w ) -> ( [_ n / k ]_ [_ m / j ]_ E e. CC <-> [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E e. CC ) ) |
99 |
96 98
|
raleqbidv |
|- ( n = ( 1st ` w ) -> ( A. m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E e. CC <-> A. m e. [_ ( 1st ` w ) / k ]_ D [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E e. CC ) ) |
100 |
|
simpl |
|- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> ph ) |
101 |
29
|
nfcri |
|- F/ j n e. [_ m / j ]_ B |
102 |
74
|
equcomd |
|- ( m e. { j } -> j = m ) |
103 |
102 32
|
syl |
|- ( m e. { j } -> B = [_ m / j ]_ B ) |
104 |
103
|
eleq2d |
|- ( m e. { j } -> ( n e. B <-> n e. [_ m / j ]_ B ) ) |
105 |
104
|
biimpa |
|- ( ( m e. { j } /\ n e. B ) -> n e. [_ m / j ]_ B ) |
106 |
71 105
|
sylbi |
|- ( <. m , n >. e. ( { j } X. B ) -> n e. [_ m / j ]_ B ) |
107 |
106
|
a1i |
|- ( j e. A -> ( <. m , n >. e. ( { j } X. B ) -> n e. [_ m / j ]_ B ) ) |
108 |
101 107
|
rexlimi |
|- ( E. j e. A <. m , n >. e. ( { j } X. B ) -> n e. [_ m / j ]_ B ) |
109 |
69 108
|
syl |
|- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> n e. [_ m / j ]_ B ) |
110 |
5
|
ralrimivva |
|- ( ph -> A. j e. A A. k e. B E e. CC ) |
111 |
|
nfcsb1v |
|- F/_ j [_ m / j ]_ E |
112 |
111
|
nfel1 |
|- F/ j [_ m / j ]_ E e. CC |
113 |
29 112
|
nfralw |
|- F/ j A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC |
114 |
|
csbeq1a |
|- ( j = m -> E = [_ m / j ]_ E ) |
115 |
114
|
eleq1d |
|- ( j = m -> ( E e. CC <-> [_ m / j ]_ E e. CC ) ) |
116 |
32 115
|
raleqbidv |
|- ( j = m -> ( A. k e. B E e. CC <-> A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC ) ) |
117 |
113 116
|
rspc |
|- ( m e. A -> ( A. j e. A A. k e. B E e. CC -> A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC ) ) |
118 |
110 117
|
mpan9 |
|- ( ( ph /\ m e. A ) -> A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC ) |
119 |
|
nfcsb1v |
|- F/_ k [_ n / k ]_ [_ m / j ]_ E |
120 |
119
|
nfel1 |
|- F/ k [_ n / k ]_ [_ m / j ]_ E e. CC |
121 |
|
csbeq1a |
|- ( k = n -> [_ m / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
122 |
121
|
eleq1d |
|- ( k = n -> ( [_ m / j ]_ E e. CC <-> [_ n / k ]_ [_ m / j ]_ E e. CC ) ) |
123 |
120 122
|
rspc |
|- ( n e. [_ m / j ]_ B -> ( A. k e. [_ m / j ]_ B [_ m / j ]_ E e. CC -> [_ n / k ]_ [_ m / j ]_ E e. CC ) ) |
124 |
118 123
|
syl5com |
|- ( ( ph /\ m e. A ) -> ( n e. [_ m / j ]_ B -> [_ n / k ]_ [_ m / j ]_ E e. CC ) ) |
125 |
124
|
impr |
|- ( ( ph /\ ( m e. A /\ n e. [_ m / j ]_ B ) ) -> [_ n / k ]_ [_ m / j ]_ E e. CC ) |
126 |
100 79 109 125
|
syl12anc |
|- ( ( ph /\ ( n e. C /\ m e. [_ n / k ]_ D ) ) -> [_ n / k ]_ [_ m / j ]_ E e. CC ) |
127 |
126
|
ralrimivva |
|- ( ph -> A. n e. C A. m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E e. CC ) |
128 |
127
|
adantr |
|- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> A. n e. C A. m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E e. CC ) |
129 |
|
simpr |
|- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) |
130 |
|
eliun |
|- ( w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) <-> E. n e. C w e. ( { n } X. [_ n / k ]_ D ) ) |
131 |
129 130
|
sylib |
|- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> E. n e. C w e. ( { n } X. [_ n / k ]_ D ) ) |
132 |
|
xp1st |
|- ( w e. ( { n } X. [_ n / k ]_ D ) -> ( 1st ` w ) e. { n } ) |
133 |
132
|
adantl |
|- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 1st ` w ) e. { n } ) |
134 |
|
elsni |
|- ( ( 1st ` w ) e. { n } -> ( 1st ` w ) = n ) |
135 |
133 134
|
syl |
|- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 1st ` w ) = n ) |
136 |
|
simpl |
|- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> n e. C ) |
137 |
135 136
|
eqeltrd |
|- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 1st ` w ) e. C ) |
138 |
137
|
rexlimiva |
|- ( E. n e. C w e. ( { n } X. [_ n / k ]_ D ) -> ( 1st ` w ) e. C ) |
139 |
131 138
|
syl |
|- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> ( 1st ` w ) e. C ) |
140 |
99 128 139
|
rspcdva |
|- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> A. m e. [_ ( 1st ` w ) / k ]_ D [_ ( 1st ` w ) / k ]_ [_ m / j ]_ E e. CC ) |
141 |
|
xp2nd |
|- ( w e. ( { n } X. [_ n / k ]_ D ) -> ( 2nd ` w ) e. [_ n / k ]_ D ) |
142 |
141
|
adantl |
|- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 2nd ` w ) e. [_ n / k ]_ D ) |
143 |
135
|
csbeq1d |
|- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> [_ ( 1st ` w ) / k ]_ D = [_ n / k ]_ D ) |
144 |
142 143
|
eleqtrrd |
|- ( ( n e. C /\ w e. ( { n } X. [_ n / k ]_ D ) ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
145 |
144
|
rexlimiva |
|- ( E. n e. C w e. ( { n } X. [_ n / k ]_ D ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
146 |
131 145
|
syl |
|- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
147 |
95 140 146
|
rspcdva |
|- ( ( ph /\ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) ) -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E e. CC ) |
148 |
53 59 87 92 147
|
fsumcnv |
|- ( ph -> sum_ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = sum_ z e. `' U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
149 |
45 148
|
eqtr4d |
|- ( ph -> sum_ z e. U_ m e. A ( { m } X. [_ m / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = sum_ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
150 |
3
|
ralrimiva |
|- ( ph -> A. j e. A B e. Fin ) |
151 |
29
|
nfel1 |
|- F/ j [_ m / j ]_ B e. Fin |
152 |
32
|
eleq1d |
|- ( j = m -> ( B e. Fin <-> [_ m / j ]_ B e. Fin ) ) |
153 |
151 152
|
rspc |
|- ( m e. A -> ( A. j e. A B e. Fin -> [_ m / j ]_ B e. Fin ) ) |
154 |
150 153
|
mpan9 |
|- ( ( ph /\ m e. A ) -> [_ m / j ]_ B e. Fin ) |
155 |
59 1 154 125
|
fsum2d |
|- ( ph -> sum_ m e. A sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E = sum_ z e. U_ m e. A ( { m } X. [_ m / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
156 |
53 2 82 126
|
fsum2d |
|- ( ph -> sum_ n e. C sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E = sum_ w e. U_ n e. C ( { n } X. [_ n / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
157 |
149 155 156
|
3eqtr4d |
|- ( ph -> sum_ m e. A sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E = sum_ n e. C sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E ) |
158 |
|
nfcv |
|- F/_ m sum_ k e. B E |
159 |
|
nfcv |
|- F/_ j n |
160 |
159 111
|
nfcsbw |
|- F/_ j [_ n / k ]_ [_ m / j ]_ E |
161 |
29 160
|
nfsum |
|- F/_ j sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E |
162 |
|
nfcv |
|- F/_ n E |
163 |
|
nfcsb1v |
|- F/_ k [_ n / k ]_ E |
164 |
|
csbeq1a |
|- ( k = n -> E = [_ n / k ]_ E ) |
165 |
162 163 164
|
cbvsumi |
|- sum_ k e. B E = sum_ n e. B [_ n / k ]_ E |
166 |
114
|
csbeq2dv |
|- ( j = m -> [_ n / k ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
167 |
166
|
adantr |
|- ( ( j = m /\ n e. B ) -> [_ n / k ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
168 |
32 167
|
sumeq12dv |
|- ( j = m -> sum_ n e. B [_ n / k ]_ E = sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E ) |
169 |
165 168
|
eqtrid |
|- ( j = m -> sum_ k e. B E = sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E ) |
170 |
158 161 169
|
cbvsumi |
|- sum_ j e. A sum_ k e. B E = sum_ m e. A sum_ n e. [_ m / j ]_ B [_ n / k ]_ [_ m / j ]_ E |
171 |
|
nfcv |
|- F/_ n sum_ j e. D E |
172 |
37 119
|
nfsum |
|- F/_ k sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E |
173 |
|
nfcv |
|- F/_ m E |
174 |
173 111 114
|
cbvsumi |
|- sum_ j e. D E = sum_ m e. D [_ m / j ]_ E |
175 |
121
|
adantr |
|- ( ( k = n /\ m e. D ) -> [_ m / j ]_ E = [_ n / k ]_ [_ m / j ]_ E ) |
176 |
40 175
|
sumeq12dv |
|- ( k = n -> sum_ m e. D [_ m / j ]_ E = sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E ) |
177 |
174 176
|
eqtrid |
|- ( k = n -> sum_ j e. D E = sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E ) |
178 |
171 172 177
|
cbvsumi |
|- sum_ k e. C sum_ j e. D E = sum_ n e. C sum_ m e. [_ n / k ]_ D [_ n / k ]_ [_ m / j ]_ E |
179 |
157 170 178
|
3eqtr4g |
|- ( ph -> sum_ j e. A sum_ k e. B E = sum_ k e. C sum_ j e. D E ) |