| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3nn0 | 
							 |-  3 e. NN0  | 
						
						
							| 2 | 
							
								
							 | 
							fsumkthpow | 
							 |-  ( ( 3 e. NN0 /\ T e. NN0 ) -> sum_ k e. ( 0 ... T ) ( k ^ 3 ) = ( ( ( ( 3 + 1 ) BernPoly ( T + 1 ) ) - ( ( 3 + 1 ) BernPoly 0 ) ) / ( 3 + 1 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan | 
							 |-  ( T e. NN0 -> sum_ k e. ( 0 ... T ) ( k ^ 3 ) = ( ( ( ( 3 + 1 ) BernPoly ( T + 1 ) ) - ( ( 3 + 1 ) BernPoly 0 ) ) / ( 3 + 1 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							df-4 | 
							 |-  4 = ( 3 + 1 )  | 
						
						
							| 5 | 
							
								4
							 | 
							oveq1i | 
							 |-  ( 4 BernPoly ( T + 1 ) ) = ( ( 3 + 1 ) BernPoly ( T + 1 ) )  | 
						
						
							| 6 | 
							
								4
							 | 
							oveq1i | 
							 |-  ( 4 BernPoly 0 ) = ( ( 3 + 1 ) BernPoly 0 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							oveq12i | 
							 |-  ( ( 4 BernPoly ( T + 1 ) ) - ( 4 BernPoly 0 ) ) = ( ( ( 3 + 1 ) BernPoly ( T + 1 ) ) - ( ( 3 + 1 ) BernPoly 0 ) )  | 
						
						
							| 8 | 
							
								7 4
							 | 
							oveq12i | 
							 |-  ( ( ( 4 BernPoly ( T + 1 ) ) - ( 4 BernPoly 0 ) ) / 4 ) = ( ( ( ( 3 + 1 ) BernPoly ( T + 1 ) ) - ( ( 3 + 1 ) BernPoly 0 ) ) / ( 3 + 1 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nn0cn | 
							 |-  ( T e. NN0 -> T e. CC )  | 
						
						
							| 10 | 
							
								
							 | 
							peano2cn | 
							 |-  ( T e. CC -> ( T + 1 ) e. CC )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							 |-  ( T e. NN0 -> ( T + 1 ) e. CC )  | 
						
						
							| 12 | 
							
								
							 | 
							bpoly4 | 
							 |-  ( ( T + 1 ) e. CC -> ( 4 BernPoly ( T + 1 ) ) = ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							 |-  ( T e. NN0 -> ( 4 BernPoly ( T + 1 ) ) = ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							4nn | 
							 |-  4 e. NN  | 
						
						
							| 15 | 
							
								
							 | 
							0exp | 
							 |-  ( 4 e. NN -> ( 0 ^ 4 ) = 0 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ax-mp | 
							 |-  ( 0 ^ 4 ) = 0  | 
						
						
							| 17 | 
							
								
							 | 
							3nn | 
							 |-  3 e. NN  | 
						
						
							| 18 | 
							
								
							 | 
							0exp | 
							 |-  ( 3 e. NN -> ( 0 ^ 3 ) = 0 )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							ax-mp | 
							 |-  ( 0 ^ 3 ) = 0  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq2i | 
							 |-  ( 2 x. ( 0 ^ 3 ) ) = ( 2 x. 0 )  | 
						
						
							| 21 | 
							
								
							 | 
							2t0e0 | 
							 |-  ( 2 x. 0 ) = 0  | 
						
						
							| 22 | 
							
								20 21
							 | 
							eqtri | 
							 |-  ( 2 x. ( 0 ^ 3 ) ) = 0  | 
						
						
							| 23 | 
							
								16 22
							 | 
							oveq12i | 
							 |-  ( ( 0 ^ 4 ) - ( 2 x. ( 0 ^ 3 ) ) ) = ( 0 - 0 )  | 
						
						
							| 24 | 
							
								
							 | 
							0m0e0 | 
							 |-  ( 0 - 0 ) = 0  | 
						
						
							| 25 | 
							
								23 24
							 | 
							eqtri | 
							 |-  ( ( 0 ^ 4 ) - ( 2 x. ( 0 ^ 3 ) ) ) = 0  | 
						
						
							| 26 | 
							
								
							 | 
							sq0 | 
							 |-  ( 0 ^ 2 ) = 0  | 
						
						
							| 27 | 
							
								25 26
							 | 
							oveq12i | 
							 |-  ( ( ( 0 ^ 4 ) - ( 2 x. ( 0 ^ 3 ) ) ) + ( 0 ^ 2 ) ) = ( 0 + 0 )  | 
						
						
							| 28 | 
							
								
							 | 
							00id | 
							 |-  ( 0 + 0 ) = 0  | 
						
						
							| 29 | 
							
								27 28
							 | 
							eqtri | 
							 |-  ( ( ( 0 ^ 4 ) - ( 2 x. ( 0 ^ 3 ) ) ) + ( 0 ^ 2 ) ) = 0  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq1i | 
							 |-  ( ( ( ( 0 ^ 4 ) - ( 2 x. ( 0 ^ 3 ) ) ) + ( 0 ^ 2 ) ) - ( 1 / ; 3 0 ) ) = ( 0 - ( 1 / ; 3 0 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							0cn | 
							 |-  0 e. CC  | 
						
						
							| 32 | 
							
								
							 | 
							bpoly4 | 
							 |-  ( 0 e. CC -> ( 4 BernPoly 0 ) = ( ( ( ( 0 ^ 4 ) - ( 2 x. ( 0 ^ 3 ) ) ) + ( 0 ^ 2 ) ) - ( 1 / ; 3 0 ) ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							ax-mp | 
							 |-  ( 4 BernPoly 0 ) = ( ( ( ( 0 ^ 4 ) - ( 2 x. ( 0 ^ 3 ) ) ) + ( 0 ^ 2 ) ) - ( 1 / ; 3 0 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							df-neg | 
							 |-  -u ( 1 / ; 3 0 ) = ( 0 - ( 1 / ; 3 0 ) )  | 
						
						
							| 35 | 
							
								30 33 34
							 | 
							3eqtr4i | 
							 |-  ( 4 BernPoly 0 ) = -u ( 1 / ; 3 0 )  | 
						
						
							| 36 | 
							
								35
							 | 
							a1i | 
							 |-  ( T e. NN0 -> ( 4 BernPoly 0 ) = -u ( 1 / ; 3 0 ) )  | 
						
						
							| 37 | 
							
								13 36
							 | 
							oveq12d | 
							 |-  ( T e. NN0 -> ( ( 4 BernPoly ( T + 1 ) ) - ( 4 BernPoly 0 ) ) = ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) - -u ( 1 / ; 3 0 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							4nn0 | 
							 |-  4 e. NN0  | 
						
						
							| 39 | 
							
								
							 | 
							expcl | 
							 |-  ( ( ( T + 1 ) e. CC /\ 4 e. NN0 ) -> ( ( T + 1 ) ^ 4 ) e. CC )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							mpan2 | 
							 |-  ( ( T + 1 ) e. CC -> ( ( T + 1 ) ^ 4 ) e. CC )  | 
						
						
							| 41 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 42 | 
							
								
							 | 
							expcl | 
							 |-  ( ( ( T + 1 ) e. CC /\ 3 e. NN0 ) -> ( ( T + 1 ) ^ 3 ) e. CC )  | 
						
						
							| 43 | 
							
								1 42
							 | 
							mpan2 | 
							 |-  ( ( T + 1 ) e. CC -> ( ( T + 1 ) ^ 3 ) e. CC )  | 
						
						
							| 44 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( 2 e. CC /\ ( ( T + 1 ) ^ 3 ) e. CC ) -> ( 2 x. ( ( T + 1 ) ^ 3 ) ) e. CC )  | 
						
						
							| 45 | 
							
								41 43 44
							 | 
							sylancr | 
							 |-  ( ( T + 1 ) e. CC -> ( 2 x. ( ( T + 1 ) ^ 3 ) ) e. CC )  | 
						
						
							| 46 | 
							
								40 45
							 | 
							subcld | 
							 |-  ( ( T + 1 ) e. CC -> ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) e. CC )  | 
						
						
							| 47 | 
							
								
							 | 
							sqcl | 
							 |-  ( ( T + 1 ) e. CC -> ( ( T + 1 ) ^ 2 ) e. CC )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							addcld | 
							 |-  ( ( T + 1 ) e. CC -> ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) e. CC )  | 
						
						
							| 49 | 
							
								10 48
							 | 
							syl | 
							 |-  ( T e. CC -> ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) e. CC )  | 
						
						
							| 50 | 
							
								9 49
							 | 
							syl | 
							 |-  ( T e. NN0 -> ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) e. CC )  | 
						
						
							| 51 | 
							
								
							 | 
							0nn0 | 
							 |-  0 e. NN0  | 
						
						
							| 52 | 
							
								1 51
							 | 
							deccl | 
							 |-  ; 3 0 e. NN0  | 
						
						
							| 53 | 
							
								52
							 | 
							nn0cni | 
							 |-  ; 3 0 e. CC  | 
						
						
							| 54 | 
							
								52
							 | 
							nn0rei | 
							 |-  ; 3 0 e. RR  | 
						
						
							| 55 | 
							
								
							 | 
							10pos | 
							 |-  0 < ; 1 0  | 
						
						
							| 56 | 
							
								17 51 51 55
							 | 
							declti | 
							 |-  0 < ; 3 0  | 
						
						
							| 57 | 
							
								54 56
							 | 
							gt0ne0ii | 
							 |-  ; 3 0 =/= 0  | 
						
						
							| 58 | 
							
								53 57
							 | 
							reccli | 
							 |-  ( 1 / ; 3 0 ) e. CC  | 
						
						
							| 59 | 
							
								
							 | 
							subcl | 
							 |-  ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) e. CC /\ ( 1 / ; 3 0 ) e. CC ) -> ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) e. CC )  | 
						
						
							| 60 | 
							
								50 58 59
							 | 
							sylancl | 
							 |-  ( T e. NN0 -> ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) e. CC )  | 
						
						
							| 61 | 
							
								
							 | 
							subneg | 
							 |-  ( ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) e. CC /\ ( 1 / ; 3 0 ) e. CC ) -> ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) - -u ( 1 / ; 3 0 ) ) = ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) + ( 1 / ; 3 0 ) ) )  | 
						
						
							| 62 | 
							
								60 58 61
							 | 
							sylancl | 
							 |-  ( T e. NN0 -> ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) - -u ( 1 / ; 3 0 ) ) = ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) + ( 1 / ; 3 0 ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							npcan | 
							 |-  ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) e. CC /\ ( 1 / ; 3 0 ) e. CC ) -> ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) + ( 1 / ; 3 0 ) ) = ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 64 | 
							
								49 58 63
							 | 
							sylancl | 
							 |-  ( T e. CC -> ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) + ( 1 / ; 3 0 ) ) = ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 65 | 
							
								9 64
							 | 
							syl | 
							 |-  ( T e. NN0 -> ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) + ( 1 / ; 3 0 ) ) = ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							2p2e4 | 
							 |-  ( 2 + 2 ) = 4  | 
						
						
							| 67 | 
							
								66
							 | 
							eqcomi | 
							 |-  4 = ( 2 + 2 )  | 
						
						
							| 68 | 
							
								67
							 | 
							oveq2i | 
							 |-  ( ( T + 1 ) ^ 4 ) = ( ( T + 1 ) ^ ( 2 + 2 ) )  | 
						
						
							| 69 | 
							
								
							 | 
							df-3 | 
							 |-  3 = ( 2 + 1 )  | 
						
						
							| 70 | 
							
								69
							 | 
							oveq2i | 
							 |-  ( ( T + 1 ) ^ 3 ) = ( ( T + 1 ) ^ ( 2 + 1 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							oveq2i | 
							 |-  ( 2 x. ( ( T + 1 ) ^ 3 ) ) = ( 2 x. ( ( T + 1 ) ^ ( 2 + 1 ) ) )  | 
						
						
							| 72 | 
							
								68 71
							 | 
							oveq12i | 
							 |-  ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) = ( ( ( T + 1 ) ^ ( 2 + 2 ) ) - ( 2 x. ( ( T + 1 ) ^ ( 2 + 1 ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							oveq1i | 
							 |-  ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) = ( ( ( ( T + 1 ) ^ ( 2 + 2 ) ) - ( 2 x. ( ( T + 1 ) ^ ( 2 + 1 ) ) ) ) + ( ( T + 1 ) ^ 2 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							2nn0 | 
							 |-  2 e. NN0  | 
						
						
							| 75 | 
							
								
							 | 
							expadd | 
							 |-  ( ( ( T + 1 ) e. CC /\ 2 e. NN0 /\ 2 e. NN0 ) -> ( ( T + 1 ) ^ ( 2 + 2 ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 76 | 
							
								74 74 75
							 | 
							mp3an23 | 
							 |-  ( ( T + 1 ) e. CC -> ( ( T + 1 ) ^ ( 2 + 2 ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							1nn0 | 
							 |-  1 e. NN0  | 
						
						
							| 78 | 
							
								
							 | 
							expadd | 
							 |-  ( ( ( T + 1 ) e. CC /\ 2 e. NN0 /\ 1 e. NN0 ) -> ( ( T + 1 ) ^ ( 2 + 1 ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) )  | 
						
						
							| 79 | 
							
								74 77 78
							 | 
							mp3an23 | 
							 |-  ( ( T + 1 ) e. CC -> ( ( T + 1 ) ^ ( 2 + 1 ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							oveq2d | 
							 |-  ( ( T + 1 ) e. CC -> ( 2 x. ( ( T + 1 ) ^ ( 2 + 1 ) ) ) = ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) )  | 
						
						
							| 81 | 
							
								76 80
							 | 
							oveq12d | 
							 |-  ( ( T + 1 ) e. CC -> ( ( ( T + 1 ) ^ ( 2 + 2 ) ) - ( 2 x. ( ( T + 1 ) ^ ( 2 + 1 ) ) ) ) = ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) ) )  | 
						
						
							| 82 | 
							
								10 81
							 | 
							syl | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ ( 2 + 2 ) ) - ( 2 x. ( ( T + 1 ) ^ ( 2 + 1 ) ) ) ) = ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) ) )  | 
						
						
							| 83 | 
							
								10
							 | 
							sqcld | 
							 |-  ( T e. CC -> ( ( T + 1 ) ^ 2 ) e. CC )  | 
						
						
							| 84 | 
							
								83
							 | 
							mulridd | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) x. 1 ) = ( ( T + 1 ) ^ 2 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							eqcomd | 
							 |-  ( T e. CC -> ( ( T + 1 ) ^ 2 ) = ( ( ( T + 1 ) ^ 2 ) x. 1 ) )  | 
						
						
							| 86 | 
							
								82 85
							 | 
							oveq12d | 
							 |-  ( T e. CC -> ( ( ( ( T + 1 ) ^ ( 2 + 2 ) ) - ( 2 x. ( ( T + 1 ) ^ ( 2 + 1 ) ) ) ) + ( ( T + 1 ) ^ 2 ) ) = ( ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) ) + ( ( ( T + 1 ) ^ 2 ) x. 1 ) ) )  | 
						
						
							| 87 | 
							
								10
							 | 
							exp1d | 
							 |-  ( T e. CC -> ( ( T + 1 ) ^ 1 ) = ( T + 1 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							oveq2d | 
							 |-  ( T e. CC -> ( 2 x. ( ( T + 1 ) ^ 1 ) ) = ( 2 x. ( T + 1 ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							oveq2d | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) x. ( 2 x. ( ( T + 1 ) ^ 1 ) ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( 2 x. ( T + 1 ) ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							oveq2d | 
							 |-  ( T e. CC -> ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( ( ( T + 1 ) ^ 2 ) x. ( 2 x. ( ( T + 1 ) ^ 1 ) ) ) ) = ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( ( ( T + 1 ) ^ 2 ) x. ( 2 x. ( T + 1 ) ) ) ) )  | 
						
						
							| 91 | 
							
								87 10
							 | 
							eqeltrd | 
							 |-  ( T e. CC -> ( ( T + 1 ) ^ 1 ) e. CC )  | 
						
						
							| 92 | 
							
								
							 | 
							mul12 | 
							 |-  ( ( 2 e. CC /\ ( ( T + 1 ) ^ 2 ) e. CC /\ ( ( T + 1 ) ^ 1 ) e. CC ) -> ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( 2 x. ( ( T + 1 ) ^ 1 ) ) ) )  | 
						
						
							| 93 | 
							
								41 83 91 92
							 | 
							mp3an2i | 
							 |-  ( T e. CC -> ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( 2 x. ( ( T + 1 ) ^ 1 ) ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							oveq2d | 
							 |-  ( T e. CC -> ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) ) = ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( ( ( T + 1 ) ^ 2 ) x. ( 2 x. ( ( T + 1 ) ^ 1 ) ) ) ) )  | 
						
						
							| 95 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( 2 e. CC /\ ( T + 1 ) e. CC ) -> ( 2 x. ( T + 1 ) ) e. CC )  | 
						
						
							| 96 | 
							
								41 10 95
							 | 
							sylancr | 
							 |-  ( T e. CC -> ( 2 x. ( T + 1 ) ) e. CC )  | 
						
						
							| 97 | 
							
								83 83 96
							 | 
							subdid | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) x. ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) ) = ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( ( ( T + 1 ) ^ 2 ) x. ( 2 x. ( T + 1 ) ) ) ) )  | 
						
						
							| 98 | 
							
								90 94 97
							 | 
							3eqtr4d | 
							 |-  ( T e. CC -> ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							oveq1d | 
							 |-  ( T e. CC -> ( ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) ) + ( ( ( T + 1 ) ^ 2 ) x. 1 ) ) = ( ( ( ( T + 1 ) ^ 2 ) x. ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) ) + ( ( ( T + 1 ) ^ 2 ) x. 1 ) ) )  | 
						
						
							| 100 | 
							
								83 96
							 | 
							subcld | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) e. CC )  | 
						
						
							| 101 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 102 | 
							
								
							 | 
							adddi | 
							 |-  ( ( ( ( T + 1 ) ^ 2 ) e. CC /\ ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) e. CC /\ 1 e. CC ) -> ( ( ( T + 1 ) ^ 2 ) x. ( ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) + 1 ) ) = ( ( ( ( T + 1 ) ^ 2 ) x. ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) ) + ( ( ( T + 1 ) ^ 2 ) x. 1 ) ) )  | 
						
						
							| 103 | 
							
								101 102
							 | 
							mp3an3 | 
							 |-  ( ( ( ( T + 1 ) ^ 2 ) e. CC /\ ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) e. CC ) -> ( ( ( T + 1 ) ^ 2 ) x. ( ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) + 1 ) ) = ( ( ( ( T + 1 ) ^ 2 ) x. ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) ) + ( ( ( T + 1 ) ^ 2 ) x. 1 ) ) )  | 
						
						
							| 104 | 
							
								83 100 103
							 | 
							syl2anc | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) x. ( ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) + 1 ) ) = ( ( ( ( T + 1 ) ^ 2 ) x. ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) ) + ( ( ( T + 1 ) ^ 2 ) x. 1 ) ) )  | 
						
						
							| 105 | 
							
								99 104
							 | 
							eqtr4d | 
							 |-  ( T e. CC -> ( ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) ) + ( ( ( T + 1 ) ^ 2 ) x. 1 ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) + 1 ) ) )  | 
						
						
							| 106 | 
							
								
							 | 
							adddi | 
							 |-  ( ( 2 e. CC /\ T e. CC /\ 1 e. CC ) -> ( 2 x. ( T + 1 ) ) = ( ( 2 x. T ) + ( 2 x. 1 ) ) )  | 
						
						
							| 107 | 
							
								41 101 106
							 | 
							mp3an13 | 
							 |-  ( T e. CC -> ( 2 x. ( T + 1 ) ) = ( ( 2 x. T ) + ( 2 x. 1 ) ) )  | 
						
						
							| 108 | 
							
								
							 | 
							2t1e2 | 
							 |-  ( 2 x. 1 ) = 2  | 
						
						
							| 109 | 
							
								108
							 | 
							oveq2i | 
							 |-  ( ( 2 x. T ) + ( 2 x. 1 ) ) = ( ( 2 x. T ) + 2 )  | 
						
						
							| 110 | 
							
								107 109
							 | 
							eqtrdi | 
							 |-  ( T e. CC -> ( 2 x. ( T + 1 ) ) = ( ( 2 x. T ) + 2 ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							oveq1d | 
							 |-  ( T e. CC -> ( ( 2 x. ( T + 1 ) ) - 1 ) = ( ( ( 2 x. T ) + 2 ) - 1 ) )  | 
						
						
							| 112 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( 2 e. CC /\ T e. CC ) -> ( 2 x. T ) e. CC )  | 
						
						
							| 113 | 
							
								41 112
							 | 
							mpan | 
							 |-  ( T e. CC -> ( 2 x. T ) e. CC )  | 
						
						
							| 114 | 
							
								
							 | 
							addsubass | 
							 |-  ( ( ( 2 x. T ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( ( 2 x. T ) + 2 ) - 1 ) = ( ( 2 x. T ) + ( 2 - 1 ) ) )  | 
						
						
							| 115 | 
							
								41 101 114
							 | 
							mp3an23 | 
							 |-  ( ( 2 x. T ) e. CC -> ( ( ( 2 x. T ) + 2 ) - 1 ) = ( ( 2 x. T ) + ( 2 - 1 ) ) )  | 
						
						
							| 116 | 
							
								113 115
							 | 
							syl | 
							 |-  ( T e. CC -> ( ( ( 2 x. T ) + 2 ) - 1 ) = ( ( 2 x. T ) + ( 2 - 1 ) ) )  | 
						
						
							| 117 | 
							
								
							 | 
							2m1e1 | 
							 |-  ( 2 - 1 ) = 1  | 
						
						
							| 118 | 
							
								117
							 | 
							oveq2i | 
							 |-  ( ( 2 x. T ) + ( 2 - 1 ) ) = ( ( 2 x. T ) + 1 )  | 
						
						
							| 119 | 
							
								116 118
							 | 
							eqtrdi | 
							 |-  ( T e. CC -> ( ( ( 2 x. T ) + 2 ) - 1 ) = ( ( 2 x. T ) + 1 ) )  | 
						
						
							| 120 | 
							
								111 119
							 | 
							eqtrd | 
							 |-  ( T e. CC -> ( ( 2 x. ( T + 1 ) ) - 1 ) = ( ( 2 x. T ) + 1 ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							oveq2d | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) - ( ( 2 x. ( T + 1 ) ) - 1 ) ) = ( ( ( T + 1 ) ^ 2 ) - ( ( 2 x. T ) + 1 ) ) )  | 
						
						
							| 122 | 
							
								
							 | 
							subsub | 
							 |-  ( ( ( ( T + 1 ) ^ 2 ) e. CC /\ ( 2 x. ( T + 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( T + 1 ) ^ 2 ) - ( ( 2 x. ( T + 1 ) ) - 1 ) ) = ( ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) + 1 ) )  | 
						
						
							| 123 | 
							
								101 122
							 | 
							mp3an3 | 
							 |-  ( ( ( ( T + 1 ) ^ 2 ) e. CC /\ ( 2 x. ( T + 1 ) ) e. CC ) -> ( ( ( T + 1 ) ^ 2 ) - ( ( 2 x. ( T + 1 ) ) - 1 ) ) = ( ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) + 1 ) )  | 
						
						
							| 124 | 
							
								83 96 123
							 | 
							syl2anc | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) - ( ( 2 x. ( T + 1 ) ) - 1 ) ) = ( ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) + 1 ) )  | 
						
						
							| 125 | 
							
								
							 | 
							sqcl | 
							 |-  ( T e. CC -> ( T ^ 2 ) e. CC )  | 
						
						
							| 126 | 
							
								
							 | 
							peano2cn | 
							 |-  ( ( 2 x. T ) e. CC -> ( ( 2 x. T ) + 1 ) e. CC )  | 
						
						
							| 127 | 
							
								113 126
							 | 
							syl | 
							 |-  ( T e. CC -> ( ( 2 x. T ) + 1 ) e. CC )  | 
						
						
							| 128 | 
							
								
							 | 
							binom21 | 
							 |-  ( T e. CC -> ( ( T + 1 ) ^ 2 ) = ( ( ( T ^ 2 ) + ( 2 x. T ) ) + 1 ) )  | 
						
						
							| 129 | 
							
								
							 | 
							addass | 
							 |-  ( ( ( T ^ 2 ) e. CC /\ ( 2 x. T ) e. CC /\ 1 e. CC ) -> ( ( ( T ^ 2 ) + ( 2 x. T ) ) + 1 ) = ( ( T ^ 2 ) + ( ( 2 x. T ) + 1 ) ) )  | 
						
						
							| 130 | 
							
								101 129
							 | 
							mp3an3 | 
							 |-  ( ( ( T ^ 2 ) e. CC /\ ( 2 x. T ) e. CC ) -> ( ( ( T ^ 2 ) + ( 2 x. T ) ) + 1 ) = ( ( T ^ 2 ) + ( ( 2 x. T ) + 1 ) ) )  | 
						
						
							| 131 | 
							
								125 113 130
							 | 
							syl2anc | 
							 |-  ( T e. CC -> ( ( ( T ^ 2 ) + ( 2 x. T ) ) + 1 ) = ( ( T ^ 2 ) + ( ( 2 x. T ) + 1 ) ) )  | 
						
						
							| 132 | 
							
								128 131
							 | 
							eqtrd | 
							 |-  ( T e. CC -> ( ( T + 1 ) ^ 2 ) = ( ( T ^ 2 ) + ( ( 2 x. T ) + 1 ) ) )  | 
						
						
							| 133 | 
							
								125 127 132
							 | 
							mvrraddd | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) - ( ( 2 x. T ) + 1 ) ) = ( T ^ 2 ) )  | 
						
						
							| 134 | 
							
								121 124 133
							 | 
							3eqtr3d | 
							 |-  ( T e. CC -> ( ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) + 1 ) = ( T ^ 2 ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							oveq2d | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) x. ( ( ( ( T + 1 ) ^ 2 ) - ( 2 x. ( T + 1 ) ) ) + 1 ) ) = ( ( ( T + 1 ) ^ 2 ) x. ( T ^ 2 ) ) )  | 
						
						
							| 136 | 
							
								83 125
							 | 
							mulcomd | 
							 |-  ( T e. CC -> ( ( ( T + 1 ) ^ 2 ) x. ( T ^ 2 ) ) = ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 137 | 
							
								105 135 136
							 | 
							3eqtrd | 
							 |-  ( T e. CC -> ( ( ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) - ( 2 x. ( ( ( T + 1 ) ^ 2 ) x. ( ( T + 1 ) ^ 1 ) ) ) ) + ( ( ( T + 1 ) ^ 2 ) x. 1 ) ) = ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 138 | 
							
								86 137
							 | 
							eqtrd | 
							 |-  ( T e. CC -> ( ( ( ( T + 1 ) ^ ( 2 + 2 ) ) - ( 2 x. ( ( T + 1 ) ^ ( 2 + 1 ) ) ) ) + ( ( T + 1 ) ^ 2 ) ) = ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 139 | 
							
								9 138
							 | 
							syl | 
							 |-  ( T e. NN0 -> ( ( ( ( T + 1 ) ^ ( 2 + 2 ) ) - ( 2 x. ( ( T + 1 ) ^ ( 2 + 1 ) ) ) ) + ( ( T + 1 ) ^ 2 ) ) = ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 140 | 
							
								73 139
							 | 
							eqtrid | 
							 |-  ( T e. NN0 -> ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) = ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 141 | 
							
								65 140
							 | 
							eqtrd | 
							 |-  ( T e. NN0 -> ( ( ( ( ( ( T + 1 ) ^ 4 ) - ( 2 x. ( ( T + 1 ) ^ 3 ) ) ) + ( ( T + 1 ) ^ 2 ) ) - ( 1 / ; 3 0 ) ) + ( 1 / ; 3 0 ) ) = ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 142 | 
							
								37 62 141
							 | 
							3eqtrd | 
							 |-  ( T e. NN0 -> ( ( 4 BernPoly ( T + 1 ) ) - ( 4 BernPoly 0 ) ) = ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							oveq1d | 
							 |-  ( T e. NN0 -> ( ( ( 4 BernPoly ( T + 1 ) ) - ( 4 BernPoly 0 ) ) / 4 ) = ( ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) / 4 ) )  | 
						
						
							| 144 | 
							
								8 143
							 | 
							eqtr3id | 
							 |-  ( T e. NN0 -> ( ( ( ( 3 + 1 ) BernPoly ( T + 1 ) ) - ( ( 3 + 1 ) BernPoly 0 ) ) / ( 3 + 1 ) ) = ( ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) / 4 ) )  | 
						
						
							| 145 | 
							
								3 144
							 | 
							eqtrd | 
							 |-  ( T e. NN0 -> sum_ k e. ( 0 ... T ) ( k ^ 3 ) = ( ( ( T ^ 2 ) x. ( ( T + 1 ) ^ 2 ) ) / 4 ) )  |