| Step |
Hyp |
Ref |
Expression |
| 1 |
|
summo.1 |
|- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
| 2 |
|
summo.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 3 |
|
sumrb.3 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 4 |
|
fsumcvg.4 |
|- ( ph -> A C_ ( M ... N ) ) |
| 5 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
| 6 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 7 |
3 6
|
syl |
|- ( ph -> N e. ZZ ) |
| 8 |
|
seqex |
|- seq M ( + , F ) e. _V |
| 9 |
8
|
a1i |
|- ( ph -> seq M ( + , F ) e. _V ) |
| 10 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
| 11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 12 |
3 11
|
syl |
|- ( ph -> M e. ZZ ) |
| 13 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
| 14 |
|
iftrue |
|- ( k e. A -> if ( k e. A , B , 0 ) = B ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) = B ) |
| 16 |
15 2
|
eqeltrd |
|- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) e. CC ) |
| 17 |
16
|
ex |
|- ( ph -> ( k e. A -> if ( k e. A , B , 0 ) e. CC ) ) |
| 18 |
|
iffalse |
|- ( -. k e. A -> if ( k e. A , B , 0 ) = 0 ) |
| 19 |
|
0cn |
|- 0 e. CC |
| 20 |
18 19
|
eqeltrdi |
|- ( -. k e. A -> if ( k e. A , B , 0 ) e. CC ) |
| 21 |
17 20
|
pm2.61d1 |
|- ( ph -> if ( k e. A , B , 0 ) e. CC ) |
| 22 |
1
|
fvmpt2 |
|- ( ( k e. ZZ /\ if ( k e. A , B , 0 ) e. CC ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 23 |
13 21 22
|
syl2anr |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 24 |
21
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> if ( k e. A , B , 0 ) e. CC ) |
| 25 |
23 24
|
eqeltrd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
| 26 |
10 12 25
|
serf |
|- ( ph -> seq M ( + , F ) : ( ZZ>= ` M ) --> CC ) |
| 27 |
26 3
|
ffvelcdmd |
|- ( ph -> ( seq M ( + , F ) ` N ) e. CC ) |
| 28 |
|
addrid |
|- ( m e. CC -> ( m + 0 ) = m ) |
| 29 |
28
|
adantl |
|- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. CC ) -> ( m + 0 ) = m ) |
| 30 |
3
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> N e. ( ZZ>= ` M ) ) |
| 31 |
|
simpr |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. ( ZZ>= ` N ) ) |
| 32 |
27
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ` N ) e. CC ) |
| 33 |
|
elfzuz |
|- ( m e. ( ( N + 1 ) ... n ) -> m e. ( ZZ>= ` ( N + 1 ) ) ) |
| 34 |
|
eluzelz |
|- ( m e. ( ZZ>= ` ( N + 1 ) ) -> m e. ZZ ) |
| 35 |
34
|
adantl |
|- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> m e. ZZ ) |
| 36 |
4
|
sseld |
|- ( ph -> ( m e. A -> m e. ( M ... N ) ) ) |
| 37 |
|
fznuz |
|- ( m e. ( M ... N ) -> -. m e. ( ZZ>= ` ( N + 1 ) ) ) |
| 38 |
36 37
|
syl6 |
|- ( ph -> ( m e. A -> -. m e. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 39 |
38
|
con2d |
|- ( ph -> ( m e. ( ZZ>= ` ( N + 1 ) ) -> -. m e. A ) ) |
| 40 |
39
|
imp |
|- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> -. m e. A ) |
| 41 |
35 40
|
eldifd |
|- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> m e. ( ZZ \ A ) ) |
| 42 |
|
fveqeq2 |
|- ( k = m -> ( ( F ` k ) = 0 <-> ( F ` m ) = 0 ) ) |
| 43 |
|
eldifi |
|- ( k e. ( ZZ \ A ) -> k e. ZZ ) |
| 44 |
|
eldifn |
|- ( k e. ( ZZ \ A ) -> -. k e. A ) |
| 45 |
44 18
|
syl |
|- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 0 ) = 0 ) |
| 46 |
45 19
|
eqeltrdi |
|- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 0 ) e. CC ) |
| 47 |
43 46 22
|
syl2anc |
|- ( k e. ( ZZ \ A ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
| 48 |
47 45
|
eqtrd |
|- ( k e. ( ZZ \ A ) -> ( F ` k ) = 0 ) |
| 49 |
42 48
|
vtoclga |
|- ( m e. ( ZZ \ A ) -> ( F ` m ) = 0 ) |
| 50 |
41 49
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` m ) = 0 ) |
| 51 |
33 50
|
sylan2 |
|- ( ( ph /\ m e. ( ( N + 1 ) ... n ) ) -> ( F ` m ) = 0 ) |
| 52 |
51
|
adantlr |
|- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( F ` m ) = 0 ) |
| 53 |
29 30 31 32 52
|
seqid2 |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ` N ) = ( seq M ( + , F ) ` n ) ) |
| 54 |
53
|
eqcomd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ` n ) = ( seq M ( + , F ) ` N ) ) |
| 55 |
5 7 9 27 54
|
climconst |
|- ( ph -> seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) ) |