Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
|- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
2 |
|
summo.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
3 |
|
sumrb.3 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
4 |
|
fsumcvg.4 |
|- ( ph -> A C_ ( M ... N ) ) |
5 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
6 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
7 |
3 6
|
syl |
|- ( ph -> N e. ZZ ) |
8 |
|
seqex |
|- seq M ( + , F ) e. _V |
9 |
8
|
a1i |
|- ( ph -> seq M ( + , F ) e. _V ) |
10 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
12 |
3 11
|
syl |
|- ( ph -> M e. ZZ ) |
13 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
14 |
|
iftrue |
|- ( k e. A -> if ( k e. A , B , 0 ) = B ) |
15 |
14
|
adantl |
|- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) = B ) |
16 |
15 2
|
eqeltrd |
|- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) e. CC ) |
17 |
16
|
ex |
|- ( ph -> ( k e. A -> if ( k e. A , B , 0 ) e. CC ) ) |
18 |
|
iffalse |
|- ( -. k e. A -> if ( k e. A , B , 0 ) = 0 ) |
19 |
|
0cn |
|- 0 e. CC |
20 |
18 19
|
eqeltrdi |
|- ( -. k e. A -> if ( k e. A , B , 0 ) e. CC ) |
21 |
17 20
|
pm2.61d1 |
|- ( ph -> if ( k e. A , B , 0 ) e. CC ) |
22 |
1
|
fvmpt2 |
|- ( ( k e. ZZ /\ if ( k e. A , B , 0 ) e. CC ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
23 |
13 21 22
|
syl2anr |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
24 |
21
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> if ( k e. A , B , 0 ) e. CC ) |
25 |
23 24
|
eqeltrd |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
26 |
10 12 25
|
serf |
|- ( ph -> seq M ( + , F ) : ( ZZ>= ` M ) --> CC ) |
27 |
26 3
|
ffvelrnd |
|- ( ph -> ( seq M ( + , F ) ` N ) e. CC ) |
28 |
|
addid1 |
|- ( m e. CC -> ( m + 0 ) = m ) |
29 |
28
|
adantl |
|- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. CC ) -> ( m + 0 ) = m ) |
30 |
3
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> N e. ( ZZ>= ` M ) ) |
31 |
|
simpr |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. ( ZZ>= ` N ) ) |
32 |
27
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ` N ) e. CC ) |
33 |
|
elfzuz |
|- ( m e. ( ( N + 1 ) ... n ) -> m e. ( ZZ>= ` ( N + 1 ) ) ) |
34 |
|
eluzelz |
|- ( m e. ( ZZ>= ` ( N + 1 ) ) -> m e. ZZ ) |
35 |
34
|
adantl |
|- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> m e. ZZ ) |
36 |
4
|
sseld |
|- ( ph -> ( m e. A -> m e. ( M ... N ) ) ) |
37 |
|
fznuz |
|- ( m e. ( M ... N ) -> -. m e. ( ZZ>= ` ( N + 1 ) ) ) |
38 |
36 37
|
syl6 |
|- ( ph -> ( m e. A -> -. m e. ( ZZ>= ` ( N + 1 ) ) ) ) |
39 |
38
|
con2d |
|- ( ph -> ( m e. ( ZZ>= ` ( N + 1 ) ) -> -. m e. A ) ) |
40 |
39
|
imp |
|- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> -. m e. A ) |
41 |
35 40
|
eldifd |
|- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> m e. ( ZZ \ A ) ) |
42 |
|
fveqeq2 |
|- ( k = m -> ( ( F ` k ) = 0 <-> ( F ` m ) = 0 ) ) |
43 |
|
eldifi |
|- ( k e. ( ZZ \ A ) -> k e. ZZ ) |
44 |
|
eldifn |
|- ( k e. ( ZZ \ A ) -> -. k e. A ) |
45 |
44 18
|
syl |
|- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 0 ) = 0 ) |
46 |
45 19
|
eqeltrdi |
|- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 0 ) e. CC ) |
47 |
43 46 22
|
syl2anc |
|- ( k e. ( ZZ \ A ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
48 |
47 45
|
eqtrd |
|- ( k e. ( ZZ \ A ) -> ( F ` k ) = 0 ) |
49 |
42 48
|
vtoclga |
|- ( m e. ( ZZ \ A ) -> ( F ` m ) = 0 ) |
50 |
41 49
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` m ) = 0 ) |
51 |
33 50
|
sylan2 |
|- ( ( ph /\ m e. ( ( N + 1 ) ... n ) ) -> ( F ` m ) = 0 ) |
52 |
51
|
adantlr |
|- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( F ` m ) = 0 ) |
53 |
29 30 31 32 52
|
seqid2 |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ` N ) = ( seq M ( + , F ) ` n ) ) |
54 |
53
|
eqcomd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ` n ) = ( seq M ( + , F ) ` N ) ) |
55 |
5 7 9 27 54
|
climconst |
|- ( ph -> seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) ) |