Step |
Hyp |
Ref |
Expression |
1 |
|
fsumdvds.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsumdvds.2 |
|- ( ph -> N e. ZZ ) |
3 |
|
fsumdvds.3 |
|- ( ( ph /\ k e. A ) -> B e. ZZ ) |
4 |
|
fsumdvds.4 |
|- ( ( ph /\ k e. A ) -> N || B ) |
5 |
|
0z |
|- 0 e. ZZ |
6 |
|
dvds0 |
|- ( 0 e. ZZ -> 0 || 0 ) |
7 |
5 6
|
mp1i |
|- ( ( ph /\ N = 0 ) -> 0 || 0 ) |
8 |
|
simpr |
|- ( ( ph /\ N = 0 ) -> N = 0 ) |
9 |
|
simplr |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> N = 0 ) |
10 |
4
|
adantlr |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> N || B ) |
11 |
9 10
|
eqbrtrrd |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> 0 || B ) |
12 |
3
|
adantlr |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> B e. ZZ ) |
13 |
|
0dvds |
|- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
14 |
12 13
|
syl |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> ( 0 || B <-> B = 0 ) ) |
15 |
11 14
|
mpbid |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> B = 0 ) |
16 |
15
|
sumeq2dv |
|- ( ( ph /\ N = 0 ) -> sum_ k e. A B = sum_ k e. A 0 ) |
17 |
1
|
adantr |
|- ( ( ph /\ N = 0 ) -> A e. Fin ) |
18 |
17
|
olcd |
|- ( ( ph /\ N = 0 ) -> ( A C_ ( ZZ>= ` 0 ) \/ A e. Fin ) ) |
19 |
|
sumz |
|- ( ( A C_ ( ZZ>= ` 0 ) \/ A e. Fin ) -> sum_ k e. A 0 = 0 ) |
20 |
18 19
|
syl |
|- ( ( ph /\ N = 0 ) -> sum_ k e. A 0 = 0 ) |
21 |
16 20
|
eqtrd |
|- ( ( ph /\ N = 0 ) -> sum_ k e. A B = 0 ) |
22 |
7 8 21
|
3brtr4d |
|- ( ( ph /\ N = 0 ) -> N || sum_ k e. A B ) |
23 |
1
|
adantr |
|- ( ( ph /\ N =/= 0 ) -> A e. Fin ) |
24 |
2
|
adantr |
|- ( ( ph /\ N =/= 0 ) -> N e. ZZ ) |
25 |
24
|
zcnd |
|- ( ( ph /\ N =/= 0 ) -> N e. CC ) |
26 |
3
|
adantlr |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> B e. ZZ ) |
27 |
26
|
zcnd |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> B e. CC ) |
28 |
|
simpr |
|- ( ( ph /\ N =/= 0 ) -> N =/= 0 ) |
29 |
23 25 27 28
|
fsumdivc |
|- ( ( ph /\ N =/= 0 ) -> ( sum_ k e. A B / N ) = sum_ k e. A ( B / N ) ) |
30 |
4
|
adantlr |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> N || B ) |
31 |
24
|
adantr |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> N e. ZZ ) |
32 |
|
simplr |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> N =/= 0 ) |
33 |
|
dvdsval2 |
|- ( ( N e. ZZ /\ N =/= 0 /\ B e. ZZ ) -> ( N || B <-> ( B / N ) e. ZZ ) ) |
34 |
31 32 26 33
|
syl3anc |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> ( N || B <-> ( B / N ) e. ZZ ) ) |
35 |
30 34
|
mpbid |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> ( B / N ) e. ZZ ) |
36 |
23 35
|
fsumzcl |
|- ( ( ph /\ N =/= 0 ) -> sum_ k e. A ( B / N ) e. ZZ ) |
37 |
29 36
|
eqeltrd |
|- ( ( ph /\ N =/= 0 ) -> ( sum_ k e. A B / N ) e. ZZ ) |
38 |
1 3
|
fsumzcl |
|- ( ph -> sum_ k e. A B e. ZZ ) |
39 |
38
|
adantr |
|- ( ( ph /\ N =/= 0 ) -> sum_ k e. A B e. ZZ ) |
40 |
|
dvdsval2 |
|- ( ( N e. ZZ /\ N =/= 0 /\ sum_ k e. A B e. ZZ ) -> ( N || sum_ k e. A B <-> ( sum_ k e. A B / N ) e. ZZ ) ) |
41 |
24 28 39 40
|
syl3anc |
|- ( ( ph /\ N =/= 0 ) -> ( N || sum_ k e. A B <-> ( sum_ k e. A B / N ) e. ZZ ) ) |
42 |
37 41
|
mpbird |
|- ( ( ph /\ N =/= 0 ) -> N || sum_ k e. A B ) |
43 |
22 42
|
pm2.61dane |
|- ( ph -> N || sum_ k e. A B ) |