Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsmulf1o.1 |
|- ( ph -> M e. NN ) |
2 |
|
dvdsmulf1o.2 |
|- ( ph -> N e. NN ) |
3 |
|
dvdsmulf1o.3 |
|- ( ph -> ( M gcd N ) = 1 ) |
4 |
|
dvdsmulf1o.x |
|- X = { x e. NN | x || M } |
5 |
|
dvdsmulf1o.y |
|- Y = { x e. NN | x || N } |
6 |
|
dvdsmulf1o.z |
|- Z = { x e. NN | x || ( M x. N ) } |
7 |
|
fsumdvdsmul.4 |
|- ( ( ph /\ j e. X ) -> A e. CC ) |
8 |
|
fsumdvdsmul.5 |
|- ( ( ph /\ k e. Y ) -> B e. CC ) |
9 |
|
fsumdvdsmul.6 |
|- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> ( A x. B ) = D ) |
10 |
|
fsumdvdsmul.7 |
|- ( i = ( j x. k ) -> C = D ) |
11 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
12 |
|
dvdsssfz1 |
|- ( M e. NN -> { x e. NN | x || M } C_ ( 1 ... M ) ) |
13 |
1 12
|
syl |
|- ( ph -> { x e. NN | x || M } C_ ( 1 ... M ) ) |
14 |
4 13
|
eqsstrid |
|- ( ph -> X C_ ( 1 ... M ) ) |
15 |
11 14
|
ssfid |
|- ( ph -> X e. Fin ) |
16 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
17 |
|
dvdsssfz1 |
|- ( N e. NN -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
18 |
2 17
|
syl |
|- ( ph -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
19 |
5 18
|
eqsstrid |
|- ( ph -> Y C_ ( 1 ... N ) ) |
20 |
16 19
|
ssfid |
|- ( ph -> Y e. Fin ) |
21 |
20 8
|
fsumcl |
|- ( ph -> sum_ k e. Y B e. CC ) |
22 |
15 21 7
|
fsummulc1 |
|- ( ph -> ( sum_ j e. X A x. sum_ k e. Y B ) = sum_ j e. X ( A x. sum_ k e. Y B ) ) |
23 |
20
|
adantr |
|- ( ( ph /\ j e. X ) -> Y e. Fin ) |
24 |
8
|
adantlr |
|- ( ( ( ph /\ j e. X ) /\ k e. Y ) -> B e. CC ) |
25 |
23 7 24
|
fsummulc2 |
|- ( ( ph /\ j e. X ) -> ( A x. sum_ k e. Y B ) = sum_ k e. Y ( A x. B ) ) |
26 |
9
|
anassrs |
|- ( ( ( ph /\ j e. X ) /\ k e. Y ) -> ( A x. B ) = D ) |
27 |
26
|
sumeq2dv |
|- ( ( ph /\ j e. X ) -> sum_ k e. Y ( A x. B ) = sum_ k e. Y D ) |
28 |
25 27
|
eqtrd |
|- ( ( ph /\ j e. X ) -> ( A x. sum_ k e. Y B ) = sum_ k e. Y D ) |
29 |
28
|
sumeq2dv |
|- ( ph -> sum_ j e. X ( A x. sum_ k e. Y B ) = sum_ j e. X sum_ k e. Y D ) |
30 |
|
fveq2 |
|- ( z = <. j , k >. -> ( x. ` z ) = ( x. ` <. j , k >. ) ) |
31 |
|
df-ov |
|- ( j x. k ) = ( x. ` <. j , k >. ) |
32 |
30 31
|
eqtr4di |
|- ( z = <. j , k >. -> ( x. ` z ) = ( j x. k ) ) |
33 |
32
|
csbeq1d |
|- ( z = <. j , k >. -> [_ ( x. ` z ) / i ]_ C = [_ ( j x. k ) / i ]_ C ) |
34 |
|
ovex |
|- ( j x. k ) e. _V |
35 |
34 10
|
csbie |
|- [_ ( j x. k ) / i ]_ C = D |
36 |
33 35
|
eqtrdi |
|- ( z = <. j , k >. -> [_ ( x. ` z ) / i ]_ C = D ) |
37 |
7
|
adantrr |
|- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> A e. CC ) |
38 |
8
|
adantrl |
|- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> B e. CC ) |
39 |
37 38
|
mulcld |
|- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> ( A x. B ) e. CC ) |
40 |
9 39
|
eqeltrrd |
|- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> D e. CC ) |
41 |
36 15 20 40
|
fsumxp |
|- ( ph -> sum_ j e. X sum_ k e. Y D = sum_ z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C ) |
42 |
|
nfcv |
|- F/_ w C |
43 |
|
nfcsb1v |
|- F/_ i [_ w / i ]_ C |
44 |
|
csbeq1a |
|- ( i = w -> C = [_ w / i ]_ C ) |
45 |
42 43 44
|
cbvsumi |
|- sum_ i e. Z C = sum_ w e. Z [_ w / i ]_ C |
46 |
|
csbeq1 |
|- ( w = ( x. ` z ) -> [_ w / i ]_ C = [_ ( x. ` z ) / i ]_ C ) |
47 |
|
xpfi |
|- ( ( X e. Fin /\ Y e. Fin ) -> ( X X. Y ) e. Fin ) |
48 |
15 20 47
|
syl2anc |
|- ( ph -> ( X X. Y ) e. Fin ) |
49 |
1 2 3 4 5 6
|
dvdsmulf1o |
|- ( ph -> ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-onto-> Z ) |
50 |
|
fvres |
|- ( z e. ( X X. Y ) -> ( ( x. |` ( X X. Y ) ) ` z ) = ( x. ` z ) ) |
51 |
50
|
adantl |
|- ( ( ph /\ z e. ( X X. Y ) ) -> ( ( x. |` ( X X. Y ) ) ` z ) = ( x. ` z ) ) |
52 |
40
|
ralrimivva |
|- ( ph -> A. j e. X A. k e. Y D e. CC ) |
53 |
36
|
eleq1d |
|- ( z = <. j , k >. -> ( [_ ( x. ` z ) / i ]_ C e. CC <-> D e. CC ) ) |
54 |
53
|
ralxp |
|- ( A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC <-> A. j e. X A. k e. Y D e. CC ) |
55 |
52 54
|
sylibr |
|- ( ph -> A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC ) |
56 |
|
ax-mulf |
|- x. : ( CC X. CC ) --> CC |
57 |
|
ffn |
|- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
58 |
56 57
|
ax-mp |
|- x. Fn ( CC X. CC ) |
59 |
4
|
ssrab3 |
|- X C_ NN |
60 |
|
nnsscn |
|- NN C_ CC |
61 |
59 60
|
sstri |
|- X C_ CC |
62 |
5
|
ssrab3 |
|- Y C_ NN |
63 |
62 60
|
sstri |
|- Y C_ CC |
64 |
|
xpss12 |
|- ( ( X C_ CC /\ Y C_ CC ) -> ( X X. Y ) C_ ( CC X. CC ) ) |
65 |
61 63 64
|
mp2an |
|- ( X X. Y ) C_ ( CC X. CC ) |
66 |
46
|
eleq1d |
|- ( w = ( x. ` z ) -> ( [_ w / i ]_ C e. CC <-> [_ ( x. ` z ) / i ]_ C e. CC ) ) |
67 |
66
|
ralima |
|- ( ( x. Fn ( CC X. CC ) /\ ( X X. Y ) C_ ( CC X. CC ) ) -> ( A. w e. ( x. " ( X X. Y ) ) [_ w / i ]_ C e. CC <-> A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC ) ) |
68 |
58 65 67
|
mp2an |
|- ( A. w e. ( x. " ( X X. Y ) ) [_ w / i ]_ C e. CC <-> A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC ) |
69 |
|
df-ima |
|- ( x. " ( X X. Y ) ) = ran ( x. |` ( X X. Y ) ) |
70 |
|
f1ofo |
|- ( ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-onto-> Z -> ( x. |` ( X X. Y ) ) : ( X X. Y ) -onto-> Z ) |
71 |
|
forn |
|- ( ( x. |` ( X X. Y ) ) : ( X X. Y ) -onto-> Z -> ran ( x. |` ( X X. Y ) ) = Z ) |
72 |
49 70 71
|
3syl |
|- ( ph -> ran ( x. |` ( X X. Y ) ) = Z ) |
73 |
69 72
|
syl5eq |
|- ( ph -> ( x. " ( X X. Y ) ) = Z ) |
74 |
73
|
raleqdv |
|- ( ph -> ( A. w e. ( x. " ( X X. Y ) ) [_ w / i ]_ C e. CC <-> A. w e. Z [_ w / i ]_ C e. CC ) ) |
75 |
68 74
|
bitr3id |
|- ( ph -> ( A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC <-> A. w e. Z [_ w / i ]_ C e. CC ) ) |
76 |
55 75
|
mpbid |
|- ( ph -> A. w e. Z [_ w / i ]_ C e. CC ) |
77 |
76
|
r19.21bi |
|- ( ( ph /\ w e. Z ) -> [_ w / i ]_ C e. CC ) |
78 |
46 48 49 51 77
|
fsumf1o |
|- ( ph -> sum_ w e. Z [_ w / i ]_ C = sum_ z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C ) |
79 |
45 78
|
syl5eq |
|- ( ph -> sum_ i e. Z C = sum_ z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C ) |
80 |
41 79
|
eqtr4d |
|- ( ph -> sum_ j e. X sum_ k e. Y D = sum_ i e. Z C ) |
81 |
22 29 80
|
3eqtrd |
|- ( ph -> ( sum_ j e. X A x. sum_ k e. Y B ) = sum_ i e. Z C ) |