Step |
Hyp |
Ref |
Expression |
1 |
|
fsumf1o.1 |
|- ( k = G -> B = D ) |
2 |
|
fsumf1o.2 |
|- ( ph -> C e. Fin ) |
3 |
|
fsumf1o.3 |
|- ( ph -> F : C -1-1-onto-> A ) |
4 |
|
fsumf1o.4 |
|- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
5 |
|
fsumf1o.5 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
6 |
|
sum0 |
|- sum_ k e. (/) B = 0 |
7 |
|
f1oeq2 |
|- ( C = (/) -> ( F : C -1-1-onto-> A <-> F : (/) -1-1-onto-> A ) ) |
8 |
3 7
|
syl5ibcom |
|- ( ph -> ( C = (/) -> F : (/) -1-1-onto-> A ) ) |
9 |
8
|
imp |
|- ( ( ph /\ C = (/) ) -> F : (/) -1-1-onto-> A ) |
10 |
|
f1ofo |
|- ( F : (/) -1-1-onto-> A -> F : (/) -onto-> A ) |
11 |
|
fo00 |
|- ( F : (/) -onto-> A <-> ( F = (/) /\ A = (/) ) ) |
12 |
11
|
simprbi |
|- ( F : (/) -onto-> A -> A = (/) ) |
13 |
9 10 12
|
3syl |
|- ( ( ph /\ C = (/) ) -> A = (/) ) |
14 |
13
|
sumeq1d |
|- ( ( ph /\ C = (/) ) -> sum_ k e. A B = sum_ k e. (/) B ) |
15 |
|
simpr |
|- ( ( ph /\ C = (/) ) -> C = (/) ) |
16 |
15
|
sumeq1d |
|- ( ( ph /\ C = (/) ) -> sum_ n e. C D = sum_ n e. (/) D ) |
17 |
|
sum0 |
|- sum_ n e. (/) D = 0 |
18 |
16 17
|
eqtrdi |
|- ( ( ph /\ C = (/) ) -> sum_ n e. C D = 0 ) |
19 |
6 14 18
|
3eqtr4a |
|- ( ( ph /\ C = (/) ) -> sum_ k e. A B = sum_ n e. C D ) |
20 |
19
|
ex |
|- ( ph -> ( C = (/) -> sum_ k e. A B = sum_ n e. C D ) ) |
21 |
|
2fveq3 |
|- ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) = ( ( k e. A |-> B ) ` ( F ` ( f ` n ) ) ) ) |
22 |
|
simprl |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( # ` C ) e. NN ) |
23 |
|
simprr |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) |
24 |
|
f1of |
|- ( F : C -1-1-onto-> A -> F : C --> A ) |
25 |
3 24
|
syl |
|- ( ph -> F : C --> A ) |
26 |
25
|
ffvelrnda |
|- ( ( ph /\ m e. C ) -> ( F ` m ) e. A ) |
27 |
5
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> CC ) |
28 |
27
|
ffvelrnda |
|- ( ( ph /\ ( F ` m ) e. A ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) e. CC ) |
29 |
26 28
|
syldan |
|- ( ( ph /\ m e. C ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) e. CC ) |
30 |
29
|
adantlr |
|- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ m e. C ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) e. CC ) |
31 |
|
f1oco |
|- ( ( F : C -1-1-onto-> A /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) -> ( F o. f ) : ( 1 ... ( # ` C ) ) -1-1-onto-> A ) |
32 |
3 23 31
|
syl2an2r |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( F o. f ) : ( 1 ... ( # ` C ) ) -1-1-onto-> A ) |
33 |
|
f1of |
|- ( ( F o. f ) : ( 1 ... ( # ` C ) ) -1-1-onto-> A -> ( F o. f ) : ( 1 ... ( # ` C ) ) --> A ) |
34 |
32 33
|
syl |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( F o. f ) : ( 1 ... ( # ` C ) ) --> A ) |
35 |
|
fvco3 |
|- ( ( ( F o. f ) : ( 1 ... ( # ` C ) ) --> A /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( ( k e. A |-> B ) o. ( F o. f ) ) ` n ) = ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) ) |
36 |
34 35
|
sylan |
|- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( ( k e. A |-> B ) o. ( F o. f ) ) ` n ) = ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) ) |
37 |
|
f1of |
|- ( f : ( 1 ... ( # ` C ) ) -1-1-onto-> C -> f : ( 1 ... ( # ` C ) ) --> C ) |
38 |
37
|
ad2antll |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> f : ( 1 ... ( # ` C ) ) --> C ) |
39 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` C ) ) --> C /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( F o. f ) ` n ) = ( F ` ( f ` n ) ) ) |
40 |
38 39
|
sylan |
|- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( F o. f ) ` n ) = ( F ` ( f ` n ) ) ) |
41 |
40
|
fveq2d |
|- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) = ( ( k e. A |-> B ) ` ( F ` ( f ` n ) ) ) ) |
42 |
36 41
|
eqtrd |
|- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( ( k e. A |-> B ) o. ( F o. f ) ) ` n ) = ( ( k e. A |-> B ) ` ( F ` ( f ` n ) ) ) ) |
43 |
21 22 23 30 42
|
fsum |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ m e. C ( ( k e. A |-> B ) ` ( F ` m ) ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. ( F o. f ) ) ) ` ( # ` C ) ) ) |
44 |
25
|
ffvelrnda |
|- ( ( ph /\ n e. C ) -> ( F ` n ) e. A ) |
45 |
4 44
|
eqeltrrd |
|- ( ( ph /\ n e. C ) -> G e. A ) |
46 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
47 |
1 46
|
fvmpti |
|- ( G e. A -> ( ( k e. A |-> B ) ` G ) = ( _I ` D ) ) |
48 |
45 47
|
syl |
|- ( ( ph /\ n e. C ) -> ( ( k e. A |-> B ) ` G ) = ( _I ` D ) ) |
49 |
4
|
fveq2d |
|- ( ( ph /\ n e. C ) -> ( ( k e. A |-> B ) ` ( F ` n ) ) = ( ( k e. A |-> B ) ` G ) ) |
50 |
|
eqid |
|- ( n e. C |-> D ) = ( n e. C |-> D ) |
51 |
50
|
fvmpt2i |
|- ( n e. C -> ( ( n e. C |-> D ) ` n ) = ( _I ` D ) ) |
52 |
51
|
adantl |
|- ( ( ph /\ n e. C ) -> ( ( n e. C |-> D ) ` n ) = ( _I ` D ) ) |
53 |
48 49 52
|
3eqtr4rd |
|- ( ( ph /\ n e. C ) -> ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) ) |
54 |
53
|
ralrimiva |
|- ( ph -> A. n e. C ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) ) |
55 |
|
nffvmpt1 |
|- F/_ n ( ( n e. C |-> D ) ` m ) |
56 |
55
|
nfeq1 |
|- F/ n ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) |
57 |
|
fveq2 |
|- ( n = m -> ( ( n e. C |-> D ) ` n ) = ( ( n e. C |-> D ) ` m ) ) |
58 |
|
2fveq3 |
|- ( n = m -> ( ( k e. A |-> B ) ` ( F ` n ) ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) |
59 |
57 58
|
eqeq12d |
|- ( n = m -> ( ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) <-> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) ) |
60 |
56 59
|
rspc |
|- ( m e. C -> ( A. n e. C ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) -> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) ) |
61 |
54 60
|
mpan9 |
|- ( ( ph /\ m e. C ) -> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) |
62 |
61
|
adantlr |
|- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ m e. C ) -> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) |
63 |
62
|
sumeq2dv |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ m e. C ( ( n e. C |-> D ) ` m ) = sum_ m e. C ( ( k e. A |-> B ) ` ( F ` m ) ) ) |
64 |
|
fveq2 |
|- ( m = ( ( F o. f ) ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) ) |
65 |
27
|
adantr |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( k e. A |-> B ) : A --> CC ) |
66 |
65
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
67 |
64 22 32 66 36
|
fsum |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. ( F o. f ) ) ) ` ( # ` C ) ) ) |
68 |
43 63 67
|
3eqtr4rd |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ m e. C ( ( n e. C |-> D ) ` m ) ) |
69 |
|
sumfc |
|- sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ k e. A B |
70 |
|
sumfc |
|- sum_ m e. C ( ( n e. C |-> D ) ` m ) = sum_ n e. C D |
71 |
68 69 70
|
3eqtr3g |
|- ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ k e. A B = sum_ n e. C D ) |
72 |
71
|
expr |
|- ( ( ph /\ ( # ` C ) e. NN ) -> ( f : ( 1 ... ( # ` C ) ) -1-1-onto-> C -> sum_ k e. A B = sum_ n e. C D ) ) |
73 |
72
|
exlimdv |
|- ( ( ph /\ ( # ` C ) e. NN ) -> ( E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C -> sum_ k e. A B = sum_ n e. C D ) ) |
74 |
73
|
expimpd |
|- ( ph -> ( ( ( # ` C ) e. NN /\ E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) -> sum_ k e. A B = sum_ n e. C D ) ) |
75 |
|
fz1f1o |
|- ( C e. Fin -> ( C = (/) \/ ( ( # ` C ) e. NN /\ E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) ) |
76 |
2 75
|
syl |
|- ( ph -> ( C = (/) \/ ( ( # ` C ) e. NN /\ E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) ) |
77 |
20 74 76
|
mpjaod |
|- ( ph -> sum_ k e. A B = sum_ n e. C D ) |