| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fsumf1o.1 | 
							 |-  ( k = G -> B = D )  | 
						
						
							| 2 | 
							
								
							 | 
							fsumf1o.2 | 
							 |-  ( ph -> C e. Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							fsumf1o.3 | 
							 |-  ( ph -> F : C -1-1-onto-> A )  | 
						
						
							| 4 | 
							
								
							 | 
							fsumf1o.4 | 
							 |-  ( ( ph /\ n e. C ) -> ( F ` n ) = G )  | 
						
						
							| 5 | 
							
								
							 | 
							fsumf1o.5 | 
							 |-  ( ( ph /\ k e. A ) -> B e. CC )  | 
						
						
							| 6 | 
							
								
							 | 
							sum0 | 
							 |-  sum_ k e. (/) B = 0  | 
						
						
							| 7 | 
							
								
							 | 
							f1oeq2 | 
							 |-  ( C = (/) -> ( F : C -1-1-onto-> A <-> F : (/) -1-1-onto-> A ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							syl5ibcom | 
							 |-  ( ph -> ( C = (/) -> F : (/) -1-1-onto-> A ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imp | 
							 |-  ( ( ph /\ C = (/) ) -> F : (/) -1-1-onto-> A )  | 
						
						
							| 10 | 
							
								
							 | 
							f1ofo | 
							 |-  ( F : (/) -1-1-onto-> A -> F : (/) -onto-> A )  | 
						
						
							| 11 | 
							
								
							 | 
							fo00 | 
							 |-  ( F : (/) -onto-> A <-> ( F = (/) /\ A = (/) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simprbi | 
							 |-  ( F : (/) -onto-> A -> A = (/) )  | 
						
						
							| 13 | 
							
								9 10 12
							 | 
							3syl | 
							 |-  ( ( ph /\ C = (/) ) -> A = (/) )  | 
						
						
							| 14 | 
							
								13
							 | 
							sumeq1d | 
							 |-  ( ( ph /\ C = (/) ) -> sum_ k e. A B = sum_ k e. (/) B )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ C = (/) ) -> C = (/) )  | 
						
						
							| 16 | 
							
								15
							 | 
							sumeq1d | 
							 |-  ( ( ph /\ C = (/) ) -> sum_ n e. C D = sum_ n e. (/) D )  | 
						
						
							| 17 | 
							
								
							 | 
							sum0 | 
							 |-  sum_ n e. (/) D = 0  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtrdi | 
							 |-  ( ( ph /\ C = (/) ) -> sum_ n e. C D = 0 )  | 
						
						
							| 19 | 
							
								6 14 18
							 | 
							3eqtr4a | 
							 |-  ( ( ph /\ C = (/) ) -> sum_ k e. A B = sum_ n e. C D )  | 
						
						
							| 20 | 
							
								19
							 | 
							ex | 
							 |-  ( ph -> ( C = (/) -> sum_ k e. A B = sum_ n e. C D ) )  | 
						
						
							| 21 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) = ( ( k e. A |-> B ) ` ( F ` ( f ` n ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( # ` C ) e. NN )  | 
						
						
							| 23 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> f : ( 1 ... ( # ` C ) ) -1-1-onto-> C )  | 
						
						
							| 24 | 
							
								
							 | 
							f1of | 
							 |-  ( F : C -1-1-onto-> A -> F : C --> A )  | 
						
						
							| 25 | 
							
								3 24
							 | 
							syl | 
							 |-  ( ph -> F : C --> A )  | 
						
						
							| 26 | 
							
								25
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ m e. C ) -> ( F ` m ) e. A )  | 
						
						
							| 27 | 
							
								5
							 | 
							fmpttd | 
							 |-  ( ph -> ( k e. A |-> B ) : A --> CC )  | 
						
						
							| 28 | 
							
								27
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ ( F ` m ) e. A ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) e. CC )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							syldan | 
							 |-  ( ( ph /\ m e. C ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) e. CC )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ m e. C ) -> ( ( k e. A |-> B ) ` ( F ` m ) ) e. CC )  | 
						
						
							| 31 | 
							
								
							 | 
							f1oco | 
							 |-  ( ( F : C -1-1-onto-> A /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) -> ( F o. f ) : ( 1 ... ( # ` C ) ) -1-1-onto-> A )  | 
						
						
							| 32 | 
							
								3 23 31
							 | 
							syl2an2r | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( F o. f ) : ( 1 ... ( # ` C ) ) -1-1-onto-> A )  | 
						
						
							| 33 | 
							
								
							 | 
							f1of | 
							 |-  ( ( F o. f ) : ( 1 ... ( # ` C ) ) -1-1-onto-> A -> ( F o. f ) : ( 1 ... ( # ` C ) ) --> A )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							syl | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( F o. f ) : ( 1 ... ( # ` C ) ) --> A )  | 
						
						
							| 35 | 
							
								
							 | 
							fvco3 | 
							 |-  ( ( ( F o. f ) : ( 1 ... ( # ` C ) ) --> A /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( ( k e. A |-> B ) o. ( F o. f ) ) ` n ) = ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							sylan | 
							 |-  ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( ( k e. A |-> B ) o. ( F o. f ) ) ` n ) = ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							f1of | 
							 |-  ( f : ( 1 ... ( # ` C ) ) -1-1-onto-> C -> f : ( 1 ... ( # ` C ) ) --> C )  | 
						
						
							| 38 | 
							
								37
							 | 
							ad2antll | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> f : ( 1 ... ( # ` C ) ) --> C )  | 
						
						
							| 39 | 
							
								
							 | 
							fvco3 | 
							 |-  ( ( f : ( 1 ... ( # ` C ) ) --> C /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( F o. f ) ` n ) = ( F ` ( f ` n ) ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							sylan | 
							 |-  ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( F o. f ) ` n ) = ( F ` ( f ` n ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) = ( ( k e. A |-> B ) ` ( F ` ( f ` n ) ) ) )  | 
						
						
							| 42 | 
							
								36 41
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ n e. ( 1 ... ( # ` C ) ) ) -> ( ( ( k e. A |-> B ) o. ( F o. f ) ) ` n ) = ( ( k e. A |-> B ) ` ( F ` ( f ` n ) ) ) )  | 
						
						
							| 43 | 
							
								21 22 23 30 42
							 | 
							fsum | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ m e. C ( ( k e. A |-> B ) ` ( F ` m ) ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. ( F o. f ) ) ) ` ( # ` C ) ) )  | 
						
						
							| 44 | 
							
								25
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ n e. C ) -> ( F ` n ) e. A )  | 
						
						
							| 45 | 
							
								4 44
							 | 
							eqeltrrd | 
							 |-  ( ( ph /\ n e. C ) -> G e. A )  | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							 |-  ( k e. A |-> B ) = ( k e. A |-> B )  | 
						
						
							| 47 | 
							
								1 46
							 | 
							fvmpti | 
							 |-  ( G e. A -> ( ( k e. A |-> B ) ` G ) = ( _I ` D ) )  | 
						
						
							| 48 | 
							
								45 47
							 | 
							syl | 
							 |-  ( ( ph /\ n e. C ) -> ( ( k e. A |-> B ) ` G ) = ( _I ` D ) )  | 
						
						
							| 49 | 
							
								4
							 | 
							fveq2d | 
							 |-  ( ( ph /\ n e. C ) -> ( ( k e. A |-> B ) ` ( F ` n ) ) = ( ( k e. A |-> B ) ` G ) )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							 |-  ( n e. C |-> D ) = ( n e. C |-> D )  | 
						
						
							| 51 | 
							
								50
							 | 
							fvmpt2i | 
							 |-  ( n e. C -> ( ( n e. C |-> D ) ` n ) = ( _I ` D ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl | 
							 |-  ( ( ph /\ n e. C ) -> ( ( n e. C |-> D ) ` n ) = ( _I ` D ) )  | 
						
						
							| 53 | 
							
								48 49 52
							 | 
							3eqtr4rd | 
							 |-  ( ( ph /\ n e. C ) -> ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							ralrimiva | 
							 |-  ( ph -> A. n e. C ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							nffvmpt1 | 
							 |-  F/_ n ( ( n e. C |-> D ) ` m )  | 
						
						
							| 56 | 
							
								55
							 | 
							nfeq1 | 
							 |-  F/ n ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) )  | 
						
						
							| 57 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = m -> ( ( n e. C |-> D ) ` n ) = ( ( n e. C |-> D ) ` m ) )  | 
						
						
							| 58 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( n = m -> ( ( k e. A |-> B ) ` ( F ` n ) ) = ( ( k e. A |-> B ) ` ( F ` m ) ) )  | 
						
						
							| 59 | 
							
								57 58
							 | 
							eqeq12d | 
							 |-  ( n = m -> ( ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) <-> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) )  | 
						
						
							| 60 | 
							
								56 59
							 | 
							rspc | 
							 |-  ( m e. C -> ( A. n e. C ( ( n e. C |-> D ) ` n ) = ( ( k e. A |-> B ) ` ( F ` n ) ) -> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) ) )  | 
						
						
							| 61 | 
							
								54 60
							 | 
							mpan9 | 
							 |-  ( ( ph /\ m e. C ) -> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ m e. C ) -> ( ( n e. C |-> D ) ` m ) = ( ( k e. A |-> B ) ` ( F ` m ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							sumeq2dv | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ m e. C ( ( n e. C |-> D ) ` m ) = sum_ m e. C ( ( k e. A |-> B ) ` ( F ` m ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							fveq2 | 
							 |-  ( m = ( ( F o. f ) ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( ( F o. f ) ` n ) ) )  | 
						
						
							| 65 | 
							
								27
							 | 
							adantr | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> ( k e. A |-> B ) : A --> CC )  | 
						
						
							| 66 | 
							
								65
							 | 
							ffvelcdmda | 
							 |-  ( ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC )  | 
						
						
							| 67 | 
							
								64 22 32 66 36
							 | 
							fsum | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. ( F o. f ) ) ) ` ( # ` C ) ) )  | 
						
						
							| 68 | 
							
								43 63 67
							 | 
							3eqtr4rd | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ m e. C ( ( n e. C |-> D ) ` m ) )  | 
						
						
							| 69 | 
							
								
							 | 
							sumfc | 
							 |-  sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ k e. A B  | 
						
						
							| 70 | 
							
								
							 | 
							sumfc | 
							 |-  sum_ m e. C ( ( n e. C |-> D ) ` m ) = sum_ n e. C D  | 
						
						
							| 71 | 
							
								68 69 70
							 | 
							3eqtr3g | 
							 |-  ( ( ph /\ ( ( # ` C ) e. NN /\ f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) -> sum_ k e. A B = sum_ n e. C D )  | 
						
						
							| 72 | 
							
								71
							 | 
							expr | 
							 |-  ( ( ph /\ ( # ` C ) e. NN ) -> ( f : ( 1 ... ( # ` C ) ) -1-1-onto-> C -> sum_ k e. A B = sum_ n e. C D ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							exlimdv | 
							 |-  ( ( ph /\ ( # ` C ) e. NN ) -> ( E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C -> sum_ k e. A B = sum_ n e. C D ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							expimpd | 
							 |-  ( ph -> ( ( ( # ` C ) e. NN /\ E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) -> sum_ k e. A B = sum_ n e. C D ) )  | 
						
						
							| 75 | 
							
								
							 | 
							fz1f1o | 
							 |-  ( C e. Fin -> ( C = (/) \/ ( ( # ` C ) e. NN /\ E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) )  | 
						
						
							| 76 | 
							
								2 75
							 | 
							syl | 
							 |-  ( ph -> ( C = (/) \/ ( ( # ` C ) e. NN /\ E. f f : ( 1 ... ( # ` C ) ) -1-1-onto-> C ) ) )  | 
						
						
							| 77 | 
							
								20 74 76
							 | 
							mpjaod | 
							 |-  ( ph -> sum_ k e. A B = sum_ n e. C D )  |