Step |
Hyp |
Ref |
Expression |
1 |
|
fsumf1of.1 |
|- F/ k ph |
2 |
|
fsumf1of.2 |
|- F/ n ph |
3 |
|
fsumf1of.3 |
|- ( k = G -> B = D ) |
4 |
|
fsumf1of.4 |
|- ( ph -> C e. Fin ) |
5 |
|
fsumf1of.5 |
|- ( ph -> F : C -1-1-onto-> A ) |
6 |
|
fsumf1of.6 |
|- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
7 |
|
fsumf1of.7 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
8 |
|
csbeq1a |
|- ( k = i -> B = [_ i / k ]_ B ) |
9 |
|
nfcv |
|- F/_ i B |
10 |
|
nfcsb1v |
|- F/_ k [_ i / k ]_ B |
11 |
8 9 10
|
cbvsum |
|- sum_ k e. A B = sum_ i e. A [_ i / k ]_ B |
12 |
11
|
a1i |
|- ( ph -> sum_ k e. A B = sum_ i e. A [_ i / k ]_ B ) |
13 |
|
nfv |
|- F/ k i = [_ j / n ]_ G |
14 |
|
nfcv |
|- F/_ k [_ j / n ]_ D |
15 |
10 14
|
nfeq |
|- F/ k [_ i / k ]_ B = [_ j / n ]_ D |
16 |
13 15
|
nfim |
|- F/ k ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) |
17 |
|
eqeq1 |
|- ( k = i -> ( k = [_ j / n ]_ G <-> i = [_ j / n ]_ G ) ) |
18 |
8
|
eqeq1d |
|- ( k = i -> ( B = [_ j / n ]_ D <-> [_ i / k ]_ B = [_ j / n ]_ D ) ) |
19 |
17 18
|
imbi12d |
|- ( k = i -> ( ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) <-> ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) ) ) |
20 |
|
nfcv |
|- F/_ n k |
21 |
|
nfcsb1v |
|- F/_ n [_ j / n ]_ G |
22 |
20 21
|
nfeq |
|- F/ n k = [_ j / n ]_ G |
23 |
|
nfcv |
|- F/_ n B |
24 |
|
nfcsb1v |
|- F/_ n [_ j / n ]_ D |
25 |
23 24
|
nfeq |
|- F/ n B = [_ j / n ]_ D |
26 |
22 25
|
nfim |
|- F/ n ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) |
27 |
|
csbeq1a |
|- ( n = j -> G = [_ j / n ]_ G ) |
28 |
27
|
eqeq2d |
|- ( n = j -> ( k = G <-> k = [_ j / n ]_ G ) ) |
29 |
|
csbeq1a |
|- ( n = j -> D = [_ j / n ]_ D ) |
30 |
29
|
eqeq2d |
|- ( n = j -> ( B = D <-> B = [_ j / n ]_ D ) ) |
31 |
28 30
|
imbi12d |
|- ( n = j -> ( ( k = G -> B = D ) <-> ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) ) ) |
32 |
26 31 3
|
chvarfv |
|- ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) |
33 |
16 19 32
|
chvarfv |
|- ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) |
34 |
|
nfv |
|- F/ n j e. C |
35 |
2 34
|
nfan |
|- F/ n ( ph /\ j e. C ) |
36 |
|
nfcv |
|- F/_ n ( F ` j ) |
37 |
36 21
|
nfeq |
|- F/ n ( F ` j ) = [_ j / n ]_ G |
38 |
35 37
|
nfim |
|- F/ n ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) |
39 |
|
eleq1w |
|- ( n = j -> ( n e. C <-> j e. C ) ) |
40 |
39
|
anbi2d |
|- ( n = j -> ( ( ph /\ n e. C ) <-> ( ph /\ j e. C ) ) ) |
41 |
|
fveq2 |
|- ( n = j -> ( F ` n ) = ( F ` j ) ) |
42 |
41 27
|
eqeq12d |
|- ( n = j -> ( ( F ` n ) = G <-> ( F ` j ) = [_ j / n ]_ G ) ) |
43 |
40 42
|
imbi12d |
|- ( n = j -> ( ( ( ph /\ n e. C ) -> ( F ` n ) = G ) <-> ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) ) ) |
44 |
38 43 6
|
chvarfv |
|- ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) |
45 |
|
nfv |
|- F/ k i e. A |
46 |
1 45
|
nfan |
|- F/ k ( ph /\ i e. A ) |
47 |
10
|
nfel1 |
|- F/ k [_ i / k ]_ B e. CC |
48 |
46 47
|
nfim |
|- F/ k ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
49 |
|
eleq1w |
|- ( k = i -> ( k e. A <-> i e. A ) ) |
50 |
49
|
anbi2d |
|- ( k = i -> ( ( ph /\ k e. A ) <-> ( ph /\ i e. A ) ) ) |
51 |
8
|
eleq1d |
|- ( k = i -> ( B e. CC <-> [_ i / k ]_ B e. CC ) ) |
52 |
50 51
|
imbi12d |
|- ( k = i -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) ) ) |
53 |
48 52 7
|
chvarfv |
|- ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
54 |
33 4 5 44 53
|
fsumf1o |
|- ( ph -> sum_ i e. A [_ i / k ]_ B = sum_ j e. C [_ j / n ]_ D ) |
55 |
|
nfcv |
|- F/_ j D |
56 |
29 55 24
|
cbvsum |
|- sum_ n e. C D = sum_ j e. C [_ j / n ]_ D |
57 |
56
|
eqcomi |
|- sum_ j e. C [_ j / n ]_ D = sum_ n e. C D |
58 |
57
|
a1i |
|- ( ph -> sum_ j e. C [_ j / n ]_ D = sum_ n e. C D ) |
59 |
12 54 58
|
3eqtrd |
|- ( ph -> sum_ k e. A B = sum_ n e. C D ) |