| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumf1of.1 |
|- F/ k ph |
| 2 |
|
fsumf1of.2 |
|- F/ n ph |
| 3 |
|
fsumf1of.3 |
|- ( k = G -> B = D ) |
| 4 |
|
fsumf1of.4 |
|- ( ph -> C e. Fin ) |
| 5 |
|
fsumf1of.5 |
|- ( ph -> F : C -1-1-onto-> A ) |
| 6 |
|
fsumf1of.6 |
|- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
| 7 |
|
fsumf1of.7 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 8 |
|
csbeq1a |
|- ( k = i -> B = [_ i / k ]_ B ) |
| 9 |
|
nfcv |
|- F/_ i B |
| 10 |
|
nfcsb1v |
|- F/_ k [_ i / k ]_ B |
| 11 |
8 9 10
|
cbvsum |
|- sum_ k e. A B = sum_ i e. A [_ i / k ]_ B |
| 12 |
11
|
a1i |
|- ( ph -> sum_ k e. A B = sum_ i e. A [_ i / k ]_ B ) |
| 13 |
|
nfv |
|- F/ k i = [_ j / n ]_ G |
| 14 |
|
nfcv |
|- F/_ k [_ j / n ]_ D |
| 15 |
10 14
|
nfeq |
|- F/ k [_ i / k ]_ B = [_ j / n ]_ D |
| 16 |
13 15
|
nfim |
|- F/ k ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) |
| 17 |
|
eqeq1 |
|- ( k = i -> ( k = [_ j / n ]_ G <-> i = [_ j / n ]_ G ) ) |
| 18 |
8
|
eqeq1d |
|- ( k = i -> ( B = [_ j / n ]_ D <-> [_ i / k ]_ B = [_ j / n ]_ D ) ) |
| 19 |
17 18
|
imbi12d |
|- ( k = i -> ( ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) <-> ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) ) ) |
| 20 |
|
nfcv |
|- F/_ n k |
| 21 |
|
nfcsb1v |
|- F/_ n [_ j / n ]_ G |
| 22 |
20 21
|
nfeq |
|- F/ n k = [_ j / n ]_ G |
| 23 |
|
nfcv |
|- F/_ n B |
| 24 |
|
nfcsb1v |
|- F/_ n [_ j / n ]_ D |
| 25 |
23 24
|
nfeq |
|- F/ n B = [_ j / n ]_ D |
| 26 |
22 25
|
nfim |
|- F/ n ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) |
| 27 |
|
csbeq1a |
|- ( n = j -> G = [_ j / n ]_ G ) |
| 28 |
27
|
eqeq2d |
|- ( n = j -> ( k = G <-> k = [_ j / n ]_ G ) ) |
| 29 |
|
csbeq1a |
|- ( n = j -> D = [_ j / n ]_ D ) |
| 30 |
29
|
eqeq2d |
|- ( n = j -> ( B = D <-> B = [_ j / n ]_ D ) ) |
| 31 |
28 30
|
imbi12d |
|- ( n = j -> ( ( k = G -> B = D ) <-> ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) ) ) |
| 32 |
26 31 3
|
chvarfv |
|- ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) |
| 33 |
16 19 32
|
chvarfv |
|- ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) |
| 34 |
|
nfv |
|- F/ n j e. C |
| 35 |
2 34
|
nfan |
|- F/ n ( ph /\ j e. C ) |
| 36 |
|
nfcv |
|- F/_ n ( F ` j ) |
| 37 |
36 21
|
nfeq |
|- F/ n ( F ` j ) = [_ j / n ]_ G |
| 38 |
35 37
|
nfim |
|- F/ n ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) |
| 39 |
|
eleq1w |
|- ( n = j -> ( n e. C <-> j e. C ) ) |
| 40 |
39
|
anbi2d |
|- ( n = j -> ( ( ph /\ n e. C ) <-> ( ph /\ j e. C ) ) ) |
| 41 |
|
fveq2 |
|- ( n = j -> ( F ` n ) = ( F ` j ) ) |
| 42 |
41 27
|
eqeq12d |
|- ( n = j -> ( ( F ` n ) = G <-> ( F ` j ) = [_ j / n ]_ G ) ) |
| 43 |
40 42
|
imbi12d |
|- ( n = j -> ( ( ( ph /\ n e. C ) -> ( F ` n ) = G ) <-> ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) ) ) |
| 44 |
38 43 6
|
chvarfv |
|- ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) |
| 45 |
|
nfv |
|- F/ k i e. A |
| 46 |
1 45
|
nfan |
|- F/ k ( ph /\ i e. A ) |
| 47 |
10
|
nfel1 |
|- F/ k [_ i / k ]_ B e. CC |
| 48 |
46 47
|
nfim |
|- F/ k ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
| 49 |
|
eleq1w |
|- ( k = i -> ( k e. A <-> i e. A ) ) |
| 50 |
49
|
anbi2d |
|- ( k = i -> ( ( ph /\ k e. A ) <-> ( ph /\ i e. A ) ) ) |
| 51 |
8
|
eleq1d |
|- ( k = i -> ( B e. CC <-> [_ i / k ]_ B e. CC ) ) |
| 52 |
50 51
|
imbi12d |
|- ( k = i -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) ) ) |
| 53 |
48 52 7
|
chvarfv |
|- ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
| 54 |
33 4 5 44 53
|
fsumf1o |
|- ( ph -> sum_ i e. A [_ i / k ]_ B = sum_ j e. C [_ j / n ]_ D ) |
| 55 |
|
nfcv |
|- F/_ j D |
| 56 |
29 55 24
|
cbvsum |
|- sum_ n e. C D = sum_ j e. C [_ j / n ]_ D |
| 57 |
56
|
eqcomi |
|- sum_ j e. C [_ j / n ]_ D = sum_ n e. C D |
| 58 |
57
|
a1i |
|- ( ph -> sum_ j e. C [_ j / n ]_ D = sum_ n e. C D ) |
| 59 |
12 54 58
|
3eqtrd |
|- ( ph -> sum_ k e. A B = sum_ n e. C D ) |