Step |
Hyp |
Ref |
Expression |
1 |
|
fsumf1of.1 |
|- F/ k ph |
2 |
|
fsumf1of.2 |
|- F/ n ph |
3 |
|
fsumf1of.3 |
|- ( k = G -> B = D ) |
4 |
|
fsumf1of.4 |
|- ( ph -> C e. Fin ) |
5 |
|
fsumf1of.5 |
|- ( ph -> F : C -1-1-onto-> A ) |
6 |
|
fsumf1of.6 |
|- ( ( ph /\ n e. C ) -> ( F ` n ) = G ) |
7 |
|
fsumf1of.7 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
8 |
|
csbeq1a |
|- ( k = i -> B = [_ i / k ]_ B ) |
9 |
|
nfcv |
|- F/_ i A |
10 |
|
nfcv |
|- F/_ k A |
11 |
|
nfcv |
|- F/_ i B |
12 |
|
nfcsb1v |
|- F/_ k [_ i / k ]_ B |
13 |
8 9 10 11 12
|
cbvsum |
|- sum_ k e. A B = sum_ i e. A [_ i / k ]_ B |
14 |
13
|
a1i |
|- ( ph -> sum_ k e. A B = sum_ i e. A [_ i / k ]_ B ) |
15 |
|
nfv |
|- F/ k i = [_ j / n ]_ G |
16 |
|
nfcv |
|- F/_ k [_ j / n ]_ D |
17 |
12 16
|
nfeq |
|- F/ k [_ i / k ]_ B = [_ j / n ]_ D |
18 |
15 17
|
nfim |
|- F/ k ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) |
19 |
|
eqeq1 |
|- ( k = i -> ( k = [_ j / n ]_ G <-> i = [_ j / n ]_ G ) ) |
20 |
8
|
eqeq1d |
|- ( k = i -> ( B = [_ j / n ]_ D <-> [_ i / k ]_ B = [_ j / n ]_ D ) ) |
21 |
19 20
|
imbi12d |
|- ( k = i -> ( ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) <-> ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) ) ) |
22 |
|
nfcv |
|- F/_ n k |
23 |
|
nfcsb1v |
|- F/_ n [_ j / n ]_ G |
24 |
22 23
|
nfeq |
|- F/ n k = [_ j / n ]_ G |
25 |
|
nfcv |
|- F/_ n B |
26 |
|
nfcsb1v |
|- F/_ n [_ j / n ]_ D |
27 |
25 26
|
nfeq |
|- F/ n B = [_ j / n ]_ D |
28 |
24 27
|
nfim |
|- F/ n ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) |
29 |
|
csbeq1a |
|- ( n = j -> G = [_ j / n ]_ G ) |
30 |
29
|
eqeq2d |
|- ( n = j -> ( k = G <-> k = [_ j / n ]_ G ) ) |
31 |
|
csbeq1a |
|- ( n = j -> D = [_ j / n ]_ D ) |
32 |
31
|
eqeq2d |
|- ( n = j -> ( B = D <-> B = [_ j / n ]_ D ) ) |
33 |
30 32
|
imbi12d |
|- ( n = j -> ( ( k = G -> B = D ) <-> ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) ) ) |
34 |
28 33 3
|
chvarfv |
|- ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) |
35 |
18 21 34
|
chvarfv |
|- ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) |
36 |
|
nfv |
|- F/ n j e. C |
37 |
2 36
|
nfan |
|- F/ n ( ph /\ j e. C ) |
38 |
|
nfcv |
|- F/_ n ( F ` j ) |
39 |
38 23
|
nfeq |
|- F/ n ( F ` j ) = [_ j / n ]_ G |
40 |
37 39
|
nfim |
|- F/ n ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) |
41 |
|
eleq1w |
|- ( n = j -> ( n e. C <-> j e. C ) ) |
42 |
41
|
anbi2d |
|- ( n = j -> ( ( ph /\ n e. C ) <-> ( ph /\ j e. C ) ) ) |
43 |
|
fveq2 |
|- ( n = j -> ( F ` n ) = ( F ` j ) ) |
44 |
43 29
|
eqeq12d |
|- ( n = j -> ( ( F ` n ) = G <-> ( F ` j ) = [_ j / n ]_ G ) ) |
45 |
42 44
|
imbi12d |
|- ( n = j -> ( ( ( ph /\ n e. C ) -> ( F ` n ) = G ) <-> ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) ) ) |
46 |
40 45 6
|
chvarfv |
|- ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) |
47 |
|
nfv |
|- F/ k i e. A |
48 |
1 47
|
nfan |
|- F/ k ( ph /\ i e. A ) |
49 |
12
|
nfel1 |
|- F/ k [_ i / k ]_ B e. CC |
50 |
48 49
|
nfim |
|- F/ k ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
51 |
|
eleq1w |
|- ( k = i -> ( k e. A <-> i e. A ) ) |
52 |
51
|
anbi2d |
|- ( k = i -> ( ( ph /\ k e. A ) <-> ( ph /\ i e. A ) ) ) |
53 |
8
|
eleq1d |
|- ( k = i -> ( B e. CC <-> [_ i / k ]_ B e. CC ) ) |
54 |
52 53
|
imbi12d |
|- ( k = i -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) ) ) |
55 |
50 54 7
|
chvarfv |
|- ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) |
56 |
35 4 5 46 55
|
fsumf1o |
|- ( ph -> sum_ i e. A [_ i / k ]_ B = sum_ j e. C [_ j / n ]_ D ) |
57 |
|
nfcv |
|- F/_ j C |
58 |
|
nfcv |
|- F/_ n C |
59 |
|
nfcv |
|- F/_ j D |
60 |
31 57 58 59 26
|
cbvsum |
|- sum_ n e. C D = sum_ j e. C [_ j / n ]_ D |
61 |
60
|
eqcomi |
|- sum_ j e. C [_ j / n ]_ D = sum_ n e. C D |
62 |
61
|
a1i |
|- ( ph -> sum_ j e. C [_ j / n ]_ D = sum_ n e. C D ) |
63 |
14 56 62
|
3eqtrd |
|- ( ph -> sum_ k e. A B = sum_ n e. C D ) |